Background

• DNAN based Explosives have been shown to have greatly improved IM characteristics, while still being able to meet performance requirements

• Army Qualified DNAN formulations are used in
 – PAX-21 (60mm M720A1/M768 Mortars)
 – PAX-41 (Spider Grenade)
 – PAX-48 (120mm HE-T)
 – IMX-101 (155mm M795 IM Artillery)
 – IMX-104 (60/81/120mm Mortar)
Irreversible Growth

- AOP-7 suggests it is preferred that explosives have no more than 1% irreversible growth during extreme thermal cycling.
- New IM explosives and traditional melt cast explosives like TNT and Comp-B exhibit growth in excess of 1%.
- The recent development and performance characterization of insensitive explosives based on 2,4-Dinitroanisole (DNAN) has lead to determining the effects of irreversible growth in end items using these explosives.
Irreversible Growth Test Results per AOP-7

- PAX-21: DNAN, RDX, AP
- PAX-41: DNAN, RDX
- PAX-48: DNAN, HMX, NTO
- IMX-101: DNAN, NTO, NQ
- IMX-104: DNAN, NTO, RDX

1” x 1” bare pellets subjected to 30 cycles -54ºC to +71ºC (AOP 7)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Average % Volume Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNAN</td>
<td>15.01%</td>
</tr>
<tr>
<td>PAX-41</td>
<td>12.12%</td>
</tr>
<tr>
<td>Comp B</td>
<td>8.46%</td>
</tr>
<tr>
<td>IMX-101</td>
<td>8.00%</td>
</tr>
<tr>
<td>PAX-21</td>
<td>6.77%</td>
</tr>
<tr>
<td>IMX-104</td>
<td>5.26%</td>
</tr>
<tr>
<td>PAX-48</td>
<td>3.97%</td>
</tr>
<tr>
<td>Recovered TNT</td>
<td>3.52%</td>
</tr>
<tr>
<td>TNT</td>
<td>3.10%</td>
</tr>
</tbody>
</table>

AOP-7 states the advisory criteria is that the amount of growth be no more than 1%.

Exudation and Growth: No advisory criterion but data from tests performed per U.S. 202.01.010 (Exudation) and U.S. 202.01.011 (Growth) are required for TNT based explosives. Tests performed per U.S. 202.01.010 are required for explosives containing energetic plasticizers.
98 Cycle Irreversible Growth

- Significant growth was noted for all of the materials tested; IMX-101, IMX-104, TNT, and Comp B.
- The IMX formulations formed a powdery, chalky coat on the pellet surfaces after about forty cycles.
- Although TNT had the smallest volume increase, the pellets were the most physically damaged.
- IMX-104, TNT, and Comp B all had approximately linear growth through the 98 cycle test.
- The Comp B samples, with the largest percent volume growth, cracked on the top and bottom surfaces.
- IMX-101 appeared to show a decrease in the rate of growth near the end of the test.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Percent Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp B</td>
<td>20.29%</td>
</tr>
<tr>
<td>TNT</td>
<td>7.46%</td>
</tr>
<tr>
<td>IMX-101</td>
<td>14.66%</td>
</tr>
<tr>
<td>IMX-104</td>
<td>12.72%</td>
</tr>
</tbody>
</table>
Comparison of Temperature Conditioning Among Tests

<table>
<thead>
<tr>
<th>M795 Life Cycle Temperature Extremes</th>
<th>Irreversible Growth Test</th>
<th>ITOP Sequential Environment Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>3 Rounds</td>
<td>60 Rounds each</td>
</tr>
<tr>
<td>-45.6 to 62.7 °C</td>
<td>30 cycles between -54 to 71°C</td>
<td>28 Day Hot Cycle:</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>33 °C @ 80% RH to 71 °C.</td>
</tr>
<tr>
<td>-46.1 to 71.1 °C</td>
<td></td>
<td>14 Day Cold Cycle:</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td>-51 °C</td>
</tr>
<tr>
<td>-51.1 to 71.1 °C no more 4 hours/day, less 3 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensional measurements</td>
<td>Gun Firing, All pass</td>
<td></td>
</tr>
</tbody>
</table>
Growth Test of IMX-101 in M795

• Purpose – Following AOP-7 guidance, the effect of IMX-101 explosive growth on the fuze well cavity and explosive cast quality was studied

• Test Description – Subject three (3) M795 projectiles to 30 cycles of temperature conditioning between 71.1°C and -53.9°C
 – Test is normally done on explosive unconfined

• Test Items
 – Sample 1 – M795 with 40% fiber reinforced fuze well liner with PBXN-9 supplementary charge and plastic lift plug
 – Sample 2 – M795 with 40% fiber fuze well liner and plastic lift plug
 – Sample 3 – M795 with drilled fuze well cavity (no liner) and plastic lift plug

• Result
 – No observable issues identified
 – No significant dimensional change
Sample 1 Results – Sectioning

Plastic cup wall is nominally 0.050” thick

1.781” \(\Delta = -0.008” \)

1.778” \(\Delta = -0.013” \)

Air Gap 0.043”

1.790” \(\Delta = \text{not measurable} \)

Cup depth = 4.814” \(\Delta = -0.082” \)

Also Initially cup was domed by 0.030” afterwards domed by 0.082”

PASS
Sample 2 Results – Sectioning

Sample 2 – Liner without sup charge

Depth 4.789”
\(\Delta = -0.204” \)

Also Initially cup was concaved by 0.060” afterwards domed by 0.105”

PASS
Sample 3 Results – Sectioning

Sample 3 – No liner

PASS

1.885”
$\Delta = -0.028”$

1.857”
$\Delta = -0.045”$

1.859”
$\Delta = -0.046”$

Depth 4.877”
$\Delta = -0.116”$

Also Initially bottom was concaved by 0.012” afterwards domed by 0.036”
Observations from the three loaded M795 subjected to growth protocol:
- Minimal change to inside diameter of fuze well cavity
 - Least change observed on projectile with liner and supplementary charge (0.008” vs 0.028”)
- Minimal change to gap between HE and fuze well cavity
 - Gap increase when liner/sup chg were not present: 0.116”
- No adverse impact on removing the supplementary charge after growth cycling
- Explosive expansion into the fuze threads not observed
 - Cup is sealed into the projectile threads with RTV
- Supplementary charge has 3/8” felt pad at bottom to make up for fuze/projectile tolerance
60mm IMX-104 Growth Testing

- 30 Cycles between -65°F and 160°F (cycle time for each mortar based on time needed for internal temperature to reach mark, 6 hrs)
- All rounds sealed with inert fuzes and DP-8010
- No aux charge was included in this test
- Measurements taken for fuze well cavity depth and fuze well cavity diameter as well as on the formion fuze well adapter
60mm Growth Testing Results

Pre-Test

Post-Test

60mm growth testing shows a change of 1.35% in the fuze well cavity
81mm IMX-104
Growth Testing

- 30 Cycles between -65°F and 160°F (cycle time for each mortar based on time needed for internal temperature to reach mark, 6 hrs)
- System level 81mm mortars
- All rounds sealed with inert fuzes and DP-8010
- Measurements taken for fuze well cavity depth and fuze well cavity diameter as well as on the formion fuze well adapter
81mm Growth Testing Results

81mm mortar with an auxiliary charge

- Measurements show a displacement of 2.8%
- System inhibits growth of the explosive
 - Based on X-rays, no pinching or crushing of the aux charge takes place

Pre-Test

Post-Test
• Loaded 6 ELSGT tubes 0.050” above flush
• ELSGT tubes were x-rayed
• ELSGT tubes were thermal cycle (IAW AOP-7 Growth Test Cycle) to allow the explosive to grow within the tubes at ATC, Aberdeen, MD
• Growth was measured at the end of 30 cycles
• ELSGT tubes were re x-rayed
• Machine off 0.050” above flush surface before performing ELSGT testing
• TNT and Comp B subjected to the growth cycle and tested as above
• A control sample (un-cycled IMX-101, TNT and/or Comp B) was also tested
Pre & Post-Conditioned ELSGT’s

Pre-Conditioned

Comp B
TNT
IMX-101

Post-Conditioned

Comp B
TNT
IMX-101
Shock Sensitivity Comparison

IMX-101: 24% Change

TNT: 33% Change

IMX-101 maintains its superior shock insensitivity
M795 IM System Summary

• Tested IAW ITOP 4-2-504(1)
 – Life cycle profile
 • -51.1°C (severe cold)
 • +62.8°C (extreme hot)
 – Temperature cycle tests
 • No issues fuzing projectiles
 • No reliability failures after gun launch
 – Safety Confirmation from Independent evaluator (DTC)
 – Assigned HC 1.2.1
Summary

• IMX-101 has undergone and passed all testing necessary for an Engineering Change Program which includes ITOP testing and supplementary tests
• Testing of irreversible growth on Artillery and Mortars does not show any adverse effect on Form, Fit or Function
• IMX-101 maintains its superior shock insensitivity over the others even after the irreversible growth
• Minimal amount of irreversible growth was seen in system level (Artillery and Mortars) irreversible growth tests while all ITOP conditioning tests were satisfactory
• All rounds that were fired after thermal conditioning functioned as designed
• Each DNAN based explosive will be evaluated for irreversible growth in new end items on a case by case basis
QUESTIONS?

Philip Samuels
US Army ARDEC
Bldg 3022
Picatinny Arsenal, NJ 07806
973-724-4064
Philip.samuels@us.army.mil

Co-Contributors
Leila Zunino
Erik Wrobel
Keyur Patel
Charlie Patel
Brian Travers