Heat Flux and Thermal Response Measurements for Designing a Propane Fuel Fast Cook Off Test Apparatus

Presented to the Insensitive Munitions and Energetic Material Symposium
Las Vegas Nevada, May 2012

Jon Yagla, David Griffiths, and John Busic
Jon.yagla@navy.mil, (540) 653-7748
Naval Surface Warfare Center Dahlgren Division

Kevin Ford, Alice Atwood, and Eric Wilson
Naval Air Warfare Center, China Lake

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Agenda

• Background
• Description of Propane Burner at W91 Laboratory
• Instrumentation Overview
• Test Layout
• Test Results
 – Temperature Measurements
 – Heat Flux Measurements
• Summary
Background

• Increased Environmental Regulation has limited the use of Liquid Fuel Fires due to soil, ground water contamination, air quality
• Several countries have already switched to propane as an cleaner burning alternative fuel
 – Canada
 – Sweden
 – Germany
• Current joint effort with China Lake focuses on measuring heat fluxes in liquid fuel fires and in propane fires using multiple instruments
• This presentation focuses on the results of recent testing at a propane fast cook off facility in Germany.
W91 Laboratory
Propane Burner

Chamber Overall Dimensions

Burner Arrangement in Chamber

Igniter tubes 4 5/8 I.D.
Same elevation as burner tubes

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Test No. 2 Video
Instrumentation

Plate Thermometer - PT

- 0.7 mm Inconel plate
- Thermocouple welded on back side of plate
- Insulation

Directional Flame Thermometer - DFT

- Inconel plates
- Type K thermocouples welded to centers of inner surfaces
- Insulation
High Temperature Heat Flux Gage - VT

\[q'' = \Delta V_1 + \Delta V_2 \]

Alumel ®
Chromel ®
Insulation

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Generic Test Item

HTHFG - VT

- 3/18-16 Hole
- Sensor Recess
- Thermocouple Grooves
- 1/4-20 Hole
- Type K thermocouples welded to surface
Test Layout – Instrumentation Basket

Beaded Thermocouples
Test Layout – Instrumentation Basket
Test Layout – Instrumentation Basket

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
PT and DFT Positions

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Test 2 wind, 1.6 m/s from the West
Temperature Data

Beaded Thermocouples

All temperatures are in degrees Celsius

- 935 Front, N
- 1170, East
- 900 Back, S
- 1105 West

Average = 1125 °C
Temperature Data

STANAG 4240 Test (Flame) Requirements: An average flame temperature of at least 800°C, as measured by all valid thermocouples (sample rate > 0.2 Hz) at the test item.

The flame temperature shall reach 550°C in the order of 30 seconds after ignition as measured by any two of four flame thermocouples.
Max Temperatures
PTs Test #2

<table>
<thead>
<tr>
<th>PT</th>
<th>Front</th>
<th>PT 2</th>
<th>PT 3</th>
<th>PT 4</th>
<th>PT B</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT 1</td>
<td>969</td>
<td>1055</td>
<td>n.d.</td>
<td>1018</td>
<td></td>
</tr>
<tr>
<td>PT 2</td>
<td>1055</td>
<td>1061</td>
<td>1018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 3</td>
<td>1018</td>
<td></td>
<td>1061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 4</td>
<td>n.d.</td>
<td></td>
<td></td>
<td>1008</td>
<td></td>
</tr>
</tbody>
</table>

Ave = 1022
Std Dev = 38

UNCLASSIFIED
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Max Temperatures
DFTs Test #2

Note: Temperatures were still rising when flame was shut off

f = front plate of DFT
b = back plate

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Generic Test Item
Surface Temp Data

Ave = 462
S.D. = 49
degrees C
Centerline and Average of Beaded Thermocouple Temperatures

- Temperature rise at center of generic test item
- Temperature rise of the average of beaded thermocouples

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Heat Flux Data

PTs Test #2

<table>
<thead>
<tr>
<th>Location</th>
<th>Heat Flux (Kw/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT 1</td>
<td>50.6</td>
</tr>
<tr>
<td>PT 2</td>
<td>72.0</td>
</tr>
<tr>
<td>PT 3</td>
<td>59.2</td>
</tr>
<tr>
<td>PT 4</td>
<td>72.8</td>
</tr>
<tr>
<td>Front</td>
<td>60.8</td>
</tr>
<tr>
<td>n.d.</td>
<td></td>
</tr>
</tbody>
</table>

Average: 63.1
SD: 9.4

Graph:

Graph showing heat flux data over time for PTs Test #2.
Heat Flux Data
DFTs Test #2

f = front plate of DFT
b = back plate

82 f
76 b

161 f
81 b

115 f
82 b

160 f
72 b

131 f
105 b

Average front = 131 kW/m²,
s.d. = 30
Average back = 84 kW/m²,
s.d. =12

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Generic Test Item
Heat Flux Data, Test #2

Grand average
100 Kw/m²
s.d. = 15

HF 3 & 4

HF 1 & 2

HF 5 & 6

Ave = 96
s.d. = 16

Ave = 99
s.d. = 17

Ave = 109
s.d. = 11

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.
Summary

• Extensive data on the test item thermal environment in a propane fuel fast cook off fire have been collected

• The data from each sensor type are self consistent, but there are significant differences between the data sets from the various types of sensors

• There are gradients in the temperature and heat flux as one travels from below the basket to above the basket.
Acknowledgements

The authors gratefully acknowledge the generous support of The Technical Center for Weapons and Ammunition (WTD 91) in Meppen, Germany. In particular, Alexander Blumenberg arranged for our visit, helped set up the experiments, coordinated with German authorities, and was a gracious host. He made our visit a great success.

This project is being funded by the Department of Defense Explosive Safety Board. Our sponsor is Tom Swierk, who manages the IM & EM projects at the Naval Surface Warfare Center in Dahlgren, Virginia.
Questions??