

Enterprise Consolidation for DoD Using AdvancedTCA: A Modeling and Simulation Approach Toward Enterprise IT Planning

John P. Sahlin, PMP
Shahram Sarkani, PhD
Thomas Mazzuchi, DSc
The George Washington University

Agenda

- > The Problem
- ➤ Benefits of AdvancedTCA for DoD
- ➤ The Problem with Benchmarks
- ➤ Why Use M&S?
- Does AdvancedTCA Degrade System Performance?

The Problem

- Enterprise Consolidation within DoD is a mandate from on high
 - OPNAV N2/N6: Increase to 50% Server Utilization
 - CANES, DISA RACE, USAF AOC
- ➤ Why Consolidate?
 - It's all about the "Benjamins"
 - Cost savings
 - Facilities reduction
- > How much consolidation?
 - No good heuristics regarding what COTS equipment can handle
 - Perception that AdvancedTCA servers are too slow (one or more generations behind commodity IT)

Benefits of AdvancedTCA to DoD

Design for High A_O

- Redundant Components
- Redundant Backplanes
- Design for AO ≥ 0.99999
- Increased Availability
- Decrease downtime (modular design, hot swap)
- Decreased Logistics Delay (easier to maintain spares)

Design for Extreme Conditions

- NEBS Level III Standards
- Operating Temperatures of 55°C
- Humidity up to 85% N/C

AdvancedTCA is Designed for MOSA Compliance!

Source: http://www.acq.osd.mil/osjtf/pmguide.html

"Typical" Server Rack

Oracle CT900 AdvancedTCA Chassis Used in SPAWAR ISNS Baseline

AdvancedTCA is Designed to Reduce TOC

➤ Modularity

- Reduces logistics impact (spares, documentation, etc.)
- Unified design reduces training burden
- Reduces integration costs by standardizing interfaces

> Power Reduction

- Reduces fuel consumption
- Reduces need for Power/HVAC improvements in space
- Enables better use of space

➤ Open Standard

- ELIMINATES VENDOR LOCK IN
- Competition = Cost Savings
- LCS, ARCI, CANES acquisition models

San Diego, CA 24 October 2011

Enterprise Consolidation for DoD Using AdvancedTCA:

A Modeling and Simulation Approach Toward Enterprise IT Planning

AdvancedTCA Has a Perception Issue

- ➤ Only 2 of Top 5 Server Vendors Build AdvancedTCA
 - IBM: N/A blade.org
 - HP: Blade
 - DELL: N/A
 - SUN/Oracle: CT900; Focusing on software in future
 - Fujitsu: N/A
- AdvancedTCA Servers generally follow Commodity IT Market by a generation
 - Perceived as slower, less capable
 - Viewed as overall system performance risk

Research Question: Does the use of AdvancedTCA reduce overall system performance (and hence, hinder ability to consolidate an enterprise)?

Research Approach

- Establish architecture model, & System Goodput metric (G_S)
- Develop Enterprise System Model to simulate network dynamics / system behavior
- 3. Execute Simulation, varying:
 - Server Architecture
 - Network Architecture
 - Server Virtualization
- 4. Compare GS performance of architectures (ANOVA, Tukey, Kruskal-Wallis)

Lies, Damn Lies, and Benchmarks

<u>COMPONENT</u> Benchmarks (SPEC.org, Network Throughput) are NOT accurate predictors of <u>SYSTEM</u> performance!

Source: http://www.chevrolet.com/corvette-zr1/

The 638-hp Corvette ZR-1 can reach top speeds in excess of 200 miles per hour ...

Lies, Damn Lies, and Benchmarks

THE GEORGE WASHINGTON

... but not on THIS road!

Enterprise IT is a SYSTEM; more than just its component parts

We need a SYSTEM level benchmark as a predictor of system-level performance

מו מו מו מ

End to End Metrics:

P_F: Email

P_w: Web-based Application

P_F: File Transfer

P_D: Database

John P. Sahlin

Why Use M&S?

- Sensitivity Analysis in a lab adds too much cost/schedule to a program
 - Multiple scenarios
 - Multiple lab facilities in parallel
 - Component obsolescence
- System dynamics of IT Enterprise are complex to analyze by hand
 - Many interrelationships
 - Difficult to predict emergent behavior
 - Many-to-one node to function ratio

Which Modeling Tool to Use?

MatLAB

- Excellent tool for mathematical simulation
- Generally used for mechanical systems

> iThink

- Very Strong system dynamics modeling tool
- Object-oriented representation
- Requires user definition of performance characteristics

> OPNET Modeler

- Object-oriented modeling
- IT Hardware vendors provide templates with pre-defined performance attributes

Researchers chose OPNET Modeler due to pre-defined performance attributes to ensure accurate model performance

Modeling Approach / Data Collection

- Developed 4 Separate Use Cases of Enterprise IT Model
 - 3 Tiered Star Architecture
 - 640 end user nodes
 - Multiple user types

Scenario	Network	Server	Spec CINT2006 Rate
Baseline	1 Gbps	Model: HP DL580 # CPUs: 2 # cores per CPU: 6	58
10 Gbps	10 Gbps	Model: HP DL580 # CPUs: 4 # cores per CPU: 1	58
ATCA	1 Gbps	Model: HP BI460c # CPUs: 1 # cores per CPU: 4	34.5
High End	1 Gbps	Model: HP DL585 # CPUs: 4 # cores per CPU: 2	98.3

- Ran 100 Simulations of network traffic (ranging from 15 to 75 minutes per run)
- Collected server, network, client, and system-level performance data
- Translated individual Statistics into System Goodput G_s
 - Used Log₁₀ Transform to establish Normality

Data Analysis: ANOVA, f-Test

System Goodput (log10 Transform)									
Value	Baseline	10Gbps	ATCA	High End					
i	1	2	3	4					
$\bar{x_i}$	0.082377	0.078218	0.076542	0.07891					
n _i	100	100	100	100					
s _i ²	0.00594	0.005234	0.00675	0.007078					
\bar{x}_{GM}	0.079011655								
(n _i - 1)	99	99	99	99					
(n _i - 1) s _i ²	0.58807	0.518212	0.668235	0.700675					

ANOVA Stats		F _{TV}		F _{CV}	
xBar _{GM}	0.079012	c -	MS _{Between}	α	0.1
		F _{TV} =	MS _{Within}	D _{FN}	3
k	4			D_{FD}	396
MS _{Between}	0.008334	\mathbf{F}_{TV}	1.333333	F _{CVR}	2.627441
MS _{Within}	0.00625			F _{CVL}	0.430611

Researchers found NO STATISTICALLY SIGNIFICANT DIFFERENCE among network architectures

Findings of Research

- There is <u>NO</u> evidence to support perception that AdvancedTCA reduces overall system performance
- 2. Benefits of AdvancedTCA greatly outweigh any perceived performance risk
- 3. DoD should continue to invest in AdvancedTCA
 - Designed for AO ≥ 0.99999 systems
 - Modularity, Scalability ideal for MOSA Compliance
 - Reduced TOC through modularity, unified design
 - Significant Power Savings
 - No Vendor Lock-in = Significant Cost Reduction

Enterprise IT Consolidation: A Complex System

THE GEORGE WASHINGTON UNIVERSITY

- 1. Not readily decomposable
- 2. Evolving emergent behavior
- 3. Requires nee PM/SE practices

Manageable, Decomposable

San Diego, CA

24 October 2011

Layers of Service Variation Low-variety Interfaces

Complex Systems require Process Triage: Choose your battles and focus on the Interfaces

JUHH F. Sahili

Areas of Future Research

- 1. Extend Model to include Server Virtualization
- 2. Use System Dynamics tool (e.g., iThink) to evaluate system architecture
 - Identify queuing bottlenecks
 - Establish QoS/QoE recommendations
- 3. Normalize Simulation Data:
 - Increase number of nodes captures during simulation
 - Repeat simulation with static simulation run times

Questions?

Remember, there are no dumb questions ...

... except maybe this one

Thank You

Contact Information:

John P. Sahlin, PMP

The George Washington University

Tel: 619.213.3313

Email: sahlinj@gwu.edu

LinkedIn: http://www.linkedin.com/pub/john-sahlin-pmp/22/369/284

Research Advisors:

Shahram Sarkani, PE, PhD
The George Washington University

sarkani@gwu.edu

Thomas Mazzuchi, DSc
The George Washington University

mazzu@gwu.edu

John P. Sahlin
Enterprise Consolidation for DoD Using AdvancedTCA:
A Modeling and Simulation Approach Toward Enterprise IT Planning

About the Presenter

- > John P. Sahlin, PMP
 - Chief Engineer, SPAWAR/PMW 160 SCN, Modernization & CANES Future
 - ~18 Years DoD and Commercial Experience w/ Enterprise IT Consolidation
 - B.S., U.S. Naval Academy
 - M.S., George Washington University
 - PhD Candidate, George Washington University

Research Advisors:

- > Shahram Sarkani, PE, PhD, George Washington University
- ➤ Thomas Mazzuchi, DSc, George Washington University

References

- Kruskal, W. H., & Wallis, W. A. (1952, December). "Use of ranks in one-criterion variance analysis." Journal of the American Statistical Association 47(260), pp. 583-621.
- ➤ Lock, R. (2011, July 12). "Developing a methodology to support the evolution of System of Systems using risk analysis." Systems Engineering. [Online edition] pp. 1 12. doi: 10.1002/sys.20194
- Maier, M. W. (1998). "Architecting principles for Systems-of-Systems." System Engineering 1(4). pp. 267 – 284.
- ➤ PICMG. (2003, January). AdvancedTCA PCIMG 3.0 Short Form Specification. Available: http://www.picmg.org/pdf/ PICMG_3_0_Shortform.pdf
- ➤ R. S. Larsen. (2010). "PICMG xTCA standards extensions for physics: New developments and future plans," Proceedings of the 17th IEEE-NPSS Real Time Conference, pp. 978-984.
- ➤ PICMG. (2004, June 23). "AdvancedTCA tutorial." Available: http://www.picmg.org/pdf/Supercomm_Tutorial.pdf
- ➤ Sheard, S. A., & Mostashari, A. (2009). "Principles of Complex Systems Engineering." Systems Engineering 12(4). Pp. 295 311. doi: 10.1002/sys.20124