Development of Infrared Tracers

Isabelle Theobald
GD-OTS Canada
Outline

- Objectives
- Features and Benefits
- Development Steps
- Formulation Selection
- Tracer Composition Process
- Tracer Assembly Process
- Ballistic Performances
- Conclusions
Objectives

The objectives are the following:

– Develop a complete family of small caliber infrared (IR) cartridges (main objective) using the “Lean Design for Six Sigma” methodology. The selected calibers are 5.56, 7.62, and 12.7 mm.

– Develop tracer and igniter compositions that are invisible to the naked eye and visible with night vision goggles.
 • Different tracer compositions for each caliber because the trace distance requirement is not the same; the burning rate should be different.

– Define design and process parameters of the IR tracers for each caliber.

– Develop IR cartridges meeting NATO standards.
Features and Benefits

- Use the same projectile, jacket, core and propelling system (primer and propellant) as the conventional tracer cartridges.
- Only igniter and tracer compositions are modified.
- Same match and ballistic as conventional cartridges because only pyrotechnic compositions change.
- Reduce small arms firing signature with IR tracers.
- Increase safety by reducing the risk of detection by enemy force.
Development Steps

Development of tracer compositions (5.56 mm and 7.62 mm):

- Preliminary development is completed.
 - Gun firing performed in both calibers using different formulations. Formulation was selected and needs to be optimized for each caliber.

- Advanced development is on-going:
 - Small scale test developed to analyze IR tracers.
 - DOE (Design of Experiment) to optimize tracer formulations and key assembly parameters, and then verify tolerances.
 - Demonstration in an operational environment and at extreme temperatures (-54°C, +52°C).
Development Steps

- Development of tracer compositions (12.7mm):
 - A new tracer composition has to be developed which has not yet however begun but will be completed once development for the other calibers is completed.

- Development of igniter compositions is completed for all 3 calibers.
Formulations Selection

- Ingredient selection based up on purity, hygroscopicity, and grain size.

- Igniter composition:
 - Ignition temperature, heat of combustion, and ability to ignite the tracer composition.

- Tracer composition:
 - Oxidizer:
 - Easiness of ignition and increase intensity in IR region.
 - Fuel:
 - Easiness of ignition and increase intensity in IR region.
 - Binder:
 - Low melting point, humidity barrier, covering ability, and easiness of flow.
Tracer Composition Process

- Investigation performed to determine:
 - Mixing time of every steps
 - Drying time
 - Final granulation
 - Humidity content

- Characterization of tracer composition:
 - Grain size distribution
 - Calorimetric heat
 - Ease of flow
 - Friction sensitivity
 - Light intensity in visible and IR spectrum
Tracer Assembly Process

- Parameters studied:
 - Tracer composition weight
 - Igniter composition weight
 - Consolidation pressure
 - Number of increments
 - Pressure gradient
 - Punch shape
 - Air gap between closing disc and composition

- All of these parameters vary from caliber 5.56 mm, 7.62 mm and 12.7 mm.

- Some parameters had less influence while others will need to be optimized.
Ballistic Performances

- Performance evaluation during preliminary development
 - Ignition at -54°C, +21°C and at +52°C
 - Trace distance
 - Day and night visibility (naked eye vs night vision goggles)
 - Light intensity at desired wavelength
 - Pulse, projection and other visible defects

- Gun firing performances:
 - First test
 • Standard 90° observation angle
 - Optimization
 • Various observation angles (90°, 45°, 12° and 0°)
 • Modified assembly parameters in 7.62 mm
Ballistic Performances in 5.56 mm

First test using conventional 90° observation angle:
- Tracers were invisible to naked eye from gun mouth up to 600m.
- Tracers were invisible at gun muzzle and ignited at 140m (in IR).
- Only 20% of the tracers were visible in IR at 600m.
- Tracers projected ashes.

Optimization using modified observation angles:
- Invisible to naked eye except some projections at 550m (37%).
- Visibility and intensity increase in IR when
 - distance from the shooter increases (140m vs 300m)
 - observation angle is reduced from 90° to 45° to 12° and even behind the shooter.

Therefore for IR tracers, the best observation point is at 300m with a 12° observation angle.
Ballistic Performances in 7.62 mm

First test using conventional 90° observation angle:
- Tracers were invisible to naked eye at 13m.
- Tracers were invisible at 13m and ignited at 140m (in IR).
- 32% were slightly visible in the visible band during the trajectory.
- 94% of the tracers met the trace distance requirement of 775m.
- Tracers projected ashes.

Optimization using modified observation angles and assembly parameters:
- Invisible to naked eye except projections at 550m (94%).
- Same observations as in 5.56 mm for visibility and intensity in IR.

Therefore for IR tracers, the best observation point is at 300m with a 12° observation angle.
Ballistic Performances in 12.7 mm

- Feasibility tests results are:
 - Some ignition problems
 - Visible to the naked eyes (igniter and tracer)
 - Excellent trace quality in IR
 - Acceptable trace distance
 - Projections were observed
Conclusions

- 12.7 mm to be developed
- Optimization required for 5.56 and 7.62 mm
- 5.56 mm, 7.62 mm and 12.7 mm infrared tracer cartridges with the following features:
 - Same components as traditional tracer cartridges except igniter and tracer compositions
 - Same ballistic as visible tracer
 - Detection by enemy is reduced
 - Good performance in infrared
Contact Information

Isabelle Theobald, M. Sc. Chemist

General Dynamics – Ordnance and Tactical Systems – Canada

Phone: 1-450-581-3080 ext. 8346

Email: isabelle.theobald@can.gd-ots.com