Facility Infrastructure Study for Caseless Ammunition

NDIA Small Arms Conference
24 MAY 2011

Christopher A. Perhala, Martin J. Hopkins, Steven C. Lorence, and C. Byron Tolbert
Battelle
505 King Avenue, Columbus, OH 43201
Acknowledgement

Work supported by
JSSAP, Picatinny Arsenal, New Jersey
through
Army Research Office – Scientific Services Program (ARO/SSP)
under
USG contract W911NF-07-D-0001
Project Scope

- Develop Rough Order of Magnitude (ROM) cost estimate for Caseless (CL) ammunition production
- CL has only two common components w/current (brass-cased) ammo: bullet & primer mixture
- Focus on new or unique infrastructure needed
 - Facilities
 - Equipment
- Consider two production rates:
 - 400 million rounds per year (sustainment)
 - 1 billion rounds per year (surge)
- Production concept not detailed – only defined sufficient to support ROM estimate
Caseless Ammunition Technology

Key Technologies
- Telescoped configuration
- High Ignition Temperature Propellant (HITP)
- Internal Primer assisted interior ballistics
- 50% wt Reduction
- 40% volume reduction
CL Production Network Concept
Molding Concepts

Injection Molding
- Binder and propellant in separate feed lines
- Propellant and binder mixed during injection
- May employ de-airing manifold (high-speed, filling without air pockets)

Liquid Injection Molding
- Propellant mixed with binder precursors in separate pre-mixes
- Premixes in separate feed lines
- Premixes mixed prior to injection
- May employ de-airing manifold (high-speed, filling without air pockets)
Mold Assembly Concept

Two-Piece Mandrels
- Form entire internal cavity without pinch points
- Lower Mandrel used to eject Cartridge Bodies

Injector Manifold
- Static mixers paired to balance load on mandrels
- May employ de-airing manifold (high-speed, filling without air pockets)

Link Groove Inserts
- Form Link Groove without pinch points
- Automatic engage/disengage via pins in top plate
Molding Line Concept

Maintenance Swap
- Molds flagged for maintenance are swapped out with spares to avoid downtime; serviced off-line

Injection Machine
- Propellant mix injected into mold
- Slight pressure applied ensures complete fill

Pressure Inspection
- Manifold applies air pressure test for vent blockages
 - If blockage then mold flagged for maintenance

Close & Latch
- Mold lid from previous cycle placed on lower mold
- Pins on mold lid push Link Groove Inserts into place

Cure
- Propellant in mold for several fill cycles until cured enough for subsequent handling

Spray Release
- Mold release applied as required
 - Ensures clean separation of propellant from mold

Unlatch & Lift
- Mold top removed

Visual Inspection
- Machine vision inspection of mold
 - If evidence of residue mold flagged for maintenance

Eject
- Gripper plate lowered onto mold
 - Cartridges ejected
 - Gripper plate engages OD of Bodies
 - Cartridges transferred to remainder of production line

Clean
- Mold is cleaned to remove residual propellant pieces

Spare Staging
Summary

• Developed Rough Order of Magnitude (ROM) cost estimates for Caseless (CL) ammunition production for two production rates
 – 400 million rounds per year (sustainment)
 – 1 billion rounds per year (surge)

• Focused on new or unique infrastructure needed
 – Facilities
 – Equipment
 – Trained personnel

• Concepts for production tooling and a new kind of production line were defined to a level sufficient to support ROM estimate
Contact Information

Christopher A Perhala, PE
Principal Research Engineer

Battelle
505 King Avenue
Columbus, OH 43201

perhalac@battelle.org
614-424-7789