

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

The Use of Physics of Failure Tools for Reliability Improvement and Addressing Modularity Issues in Evaluation and Physical Testing

Approved for public release; distribution unlimited

Richard Heine richard.w.heine.civ@mail.mil 410-278-6360 DSN 298-6360

- Benefits of Modularity in Army Systems •
 - Simpler Logistics
 - Fewer distinct parts mean more spares available
 - Smaller footprint
 - Less Specialized Training Required
 - Operators
 - Maintainers
 - Reduced Cost

Infantry Carrier Vehicle (ICV)

Commander's Vehicle (CV)

Fire Support Vehicle (FSV)

Mobile Gun System (MGS)

Engineer Squad Vehicle (ESV)

Nuclear Biological Chemical Recon Vehicle (NBC RV)

Fire Support Vehicle (FSV)

Medical Evacuation Vehicle

Anti Tank Guided Missile (ATGM)

120mm Mounted Mortar Carrier (MC)

- Question: How do we address the complexity associated with testing and evaluating a modular system?
 - Is it necessary to test all possible configurations?
 - Exacerbated by system upgrades, armor kits, repower efforts etc.
- Answer: Use of Modeling and Simulation
 - Physics of Failure analysis
 - Development and validation of dynamic models

Physics of Failure

PoF – A Comprehensive Engineering Based Reliability Approach

RDECO

Stress (e.g., vibration) is propagated from system level to failure site

- A.K.A. Physics of Failure, Predictive Technology, Predictive Engineering, Physics of Reliability
 - Model the root causes of failure (e.g., fatigue, fracture, corrosion & wear)
- Failure models & CAD tools developed
 - By industry/academia/government
 - To address specific materials, sites, & architectures

Benefits

- •Design-in reliability
- •Eliminate failures prior to test
- Better chance of passing test
- Increased fielded reliability
- Improved prognostics
- Decreased O&S costs

Surveillance System

RDECOM

Analysis showed commercial CCA OK

\$27M Cost Avoidance

Tri-Service Radio

Identified weak link in design & verified

Army Vehicle

\$1M **Cost Avoidance**

Fix confirmed through low-level test and M&S instead of full-up testing

Improved Monitor

Corrected vibration problem

Design Changes Implemented

Power Supply

Significant failures reduced w/ minimal cost fix

Reduced

testing

Reliability Improved

Mobile Bridge

\$1.5M Savings

New Missile System

PoF analysis on Plastic Ball Grid Array

Evaluate New Technologies

GY DRIVEN. WARFIGHTER FOCUSED.

Physics of Failure Process for Electronics

Support for importing CAD design files

Load Transformation

Toolbox

Environment Characterization

Product Modeling and Databases

Mechanical PoF Process

PoF reveals underlying physics – Helps to identify the root-causes of failures!

Dynamics Models to Support T&E

- Quick and inexpensive to perform
- Very repeatable compared with physical testing
- Easy to make changes between variants/kits
 - Mass
 - Inertia
 - Center of Gravity
- Parameterization critical for efficient development
- Used to identify critical configurations and reduce
 risk of untested poor performer

Finite Element and Fatigue Analysis to Support T&E

• Finite Element Analysis

RDECON

- Type available based on failure mode:
 - Structural Static, Dynamic, Shock and Vibration
 - Thermal
 - Computational Fluid Dynamics (CFD)
- Identifies critical configurations or events
- Fatigue Analysis
 - Determine miles or cycles to failure
 - Scope test by providing critical events and making time and cost estimates to experience failure

Test Asset Availability

- Testers requested help to improve their ability to ballast a vehicle, their goals:
 - Modular, inexpensive kit
 - Reduce test cost
 - Reduce time and labor for ballast process
- Why were they seeking this capability?
 - Ballasting process was time consuming, customized, iterative
 - Many vehicle variants
 - Several add-on armor kits, some variant specific and not commonly available

Ballast Kit Locations

Ballast Kit Elements

- 4 Ballast Plates per Location
- 26 Configuration Options

- Modular Ballast Kit
 - Ballast plates mounted at 4 locations
 - Roughly 4 million different total configurations

Tunnel Kit

- 2 Mounting Beams
- 9 Ballast Plates
- 10 Configuration Options

- 4 Ballast Plates per Location
- 625 Configuration Options

Front Kit

- Base Plate With Left and Right Side Mounting Points
- 4 Ballast Plates per Location
- 25 Configuration Options

Initial Calculations

CGxz Location - Notional

Ballast Location			
Front	Roof	Tunnel	Side
X			
	Х		
		Х	
			X
X	Х		
X		Х	
X			X
	Х	Х	
	Х		X
		Х	X
Х	Х	Х	
X	Х		X
X		X	X
	X	X	X
X	X	X	X

- Dynamics model initially used to estimate the extreme CG locations as well as the baseline properties for each variant
- Due to the complexity of the dynamics model and resulting simulation times, all configurations were not analyzed
 TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- Code developed to calculate the best arrangement of ballast weights
 - Least squares method to find the closest CG location

$$\sqrt{\left(CG_{x_{targ et}} - CG_{x_{ballasted}}\right)^{2} + \left(CG_{y_{targ et}} - CG_{y_{ballasted}}\right)^{2} + \left(CG_{z_{targ et}} - CG_{z_{ballasted}}\right)^{2}}$$

- Determines 20 nearest CG locations within a weight range

- Inertial properties checked versus simulation results or measured test data
- Verification of results performed based on test vehicle.

Interface

- Configuration tool can accept wheel weights, axle weights or CG location to calculate ballast configuration
- CGz data frequently has to be approximated from dynamics models or previously measured vehicles

Back End

- Mass Property data for each ballast plate and base plate obtained from CAD software
- Code (separate from the configuration tool) reads the CAD data
- Stores mass, CG and inertial properties in spreadsheet

- Results are written onto a new tab in the spreadsheet
 - 20 closest matches are stored to provide options for best inertial fit
 - Number of plates required at each location provided for each configuration
- Ballast Kit manufactured and in use at multiple test facilities
- Software and support provided for:
 - Re-ballasting test vehicles to match a different variant
 - Ballasting in place of armor kits or other equipment
 - Matching test assets to vehicles used at other facilities

- Modular Army systems simplify logistics, reduce specialized training, and overall cost, but also provide challenges to the test and evaluation community
- PoF tools provide a method to address these challenges and mitigate the risk associated with the inability to test all combinations and configurations of modern Army systems
- A modular ballast kit was designed and methodology developed using these principles to assist with the testing of not readily available vehicle variants and configurations
 - PoF analysis performed to ensure robust design and verify robustness of solution
 - Wheel weight and CG matching software developed to ensure rapid response
 - Ballast kit and associated tools utilized for multiple tests, at multiple test sites resulting in reduced test time and cost

Questions?