Optimizing Data Driven Cost Estimating Models for Space Mission Analysis and Design

NDIA Physics-Based Modeling in Design & Development for U.S. Defense Conference
November 14-17
Denver, Colorado

Zachary Jasnoff
Solutions Architect, Director
PRICE Systems, LLC
1501 Lee Highway, Suite 170
Arlington, VA 22209
USA 703.740.0082
zachary.jasnoff@pricesystems.com
In today’s data driven cost estimating environment, it is critical to understand the impact of design and systems engineering decisions on cost.

Important to leverage actual cost data in developing data-driven Cost Estimating Relationships (CERs) that relate engineering design and performance parameters to cost.

Critical in today’s environment to have the ability to conduct sensitivity analysis on not only the CER, but on the entire system estimated to understand the full impact on Measures of Effectiveness and Measures of Performance.

Using the FireSat satellite example we will discuss how to create libraries of data-driven CERs for future projects. These CERs are “white box” and auditable both in terms of the trend line equation and underlying data points.

The presentation will also cover the benefits of implementing a data-driven methodology in the TruePlanning framework vs. maintaining CERs in EXCEL.

Using a new interface developed for TruePlanning, this presentation will also demonstrate how sensitivity analysis for custom developed CERs can easily be generated.
Data Driven Estimating

What does it mean?

Among the initiatives of the act are:

- Getting things right from the start with sound systems engineering, cost-estimating;
- Ensure that cost estimates for major defense acquisition programs are fair, reliable, and unbiased;
- Ensure the consideration of trade-offs between cost, schedule, and performance early in the process of developing major weapon systems;
- An infusion of highly skilled and capable acquisition specialists to carry out the requirements of this bill and address the problems in the defense acquisition system.
Parametric Estimating

Parametric estimating represents the most widely adopted method in the integrated engineering and costing environment. Among the reasons:

- Parametrics are faster to respond than conventional or bottoms-up cost estimating;
- Parametrics, by amalgamating cost variables into a few cost drivers, require less information than other methods;
- Parametric cost drivers often align to engineering drivers, allowing concurrent development of estimates and design alternatives; no other methods have demonstrated this ability;
- Interfaces between Systems Engineering tools and parametric estimating tools, some commercial, are in use right now;
- When properly calibrated, parametric estimating is at least as accurate as any other estimating method; parametrics is often better.
Case Study

Leveraging Data-Driven CERs and Sensitivity Analysis in Satellite Estimating
FireSat Case Study

Using *Space Mission Analysis Design FireSat equations, 3rd edition*, and PRICE Systems cost research, the objectives of this case study are to:

- Develop a data-driven estimating model.
- Determine the “surface response” of the model (carpet plot analysis) to changes in design and design life parameters.
- Understand which of the design variables drive cost – and to what extent (Design of Experiments).
- Examine the trending within the cost estimating model.
- Conduct an Independent Cost Estimate (ICE) as a cross-check against our “point” estimate.

We begin by constructing a Work Breakdown Structure in the TruePlanning model and then integrating the results with Phoenix Integration ModelCenter 9.0.
“Data Driven” Example – FireSat TruePlanning Model

Product Breakdown Structure

1. [FireSat_v1]
2. FireSat System
3. Payload
4. IR Sensor
5. Visible Light Sensor
6. Communications
7. Spacecraft
8. Structure
9. Thermal
10. Electrical Power System (EPS)
11. Telemetry, Tracking and Command
12. Altitude Determination & Control
13. Apogee Kick Motor
14. Launch & Orbital Operations Support
15. FireSat Software
16. FireSat Flight Software
17. FireSat Ground Software
18. Launch vehicle
19. Launch Vehicle CER Development
20. Atlas II
21. Atlas II A
22. Atlas II AS
23. Athena 1
24. Athena 2
25. Athena 3
26. Delta II (7920, 7925)
27. Pegasus XL
28. Saturn V
29. Shuttle (IUS or TOS)
30. Titan II
31. Titan IV
32. Taurus

FireSat CER’s from Space Mission Analysis and Design (SMAD) 3rd Edition

TruePlanning Software Cost Model

Launch Vehicle CER

Launch Vehicle Database / CER Development
FireSat Cost Estimating Relationships

Product Breakdown Structure

<table>
<thead>
<tr>
<th>Level</th>
<th>Cost Object Name</th>
<th>Cost Object Description</th>
<th>Equation</th>
<th>X Name</th>
<th>Y Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>System</td>
<td>FireSat System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>IR Sensor</td>
<td>$142742 * (x^h)$</td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Visible Light Sensor</td>
<td>$53456 * (x^h)$</td>
<td>ApertureDiameter</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Communications</td>
<td>140*1000 CommWtKG</td>
<td></td>
<td>395</td>
</tr>
<tr>
<td>2</td>
<td>Assembly</td>
<td>Spacecraft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Structure</td>
<td>15.1*1000 SpacecraftDryWtKG</td>
<td></td>
<td>560</td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Thermal</td>
<td>50.6x^h7071000 Thermal_Wt_KG</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Electrical Power System (EPS)</td>
<td>112x^h7531000 EPS_Wt_KG</td>
<td></td>
<td>573</td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Telemetry, Tracking and Command</td>
<td>655x^h3581000 TTC_Wt_KG</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Attitude Determination & Control</td>
<td>295x^h7771000 ADCS_Wt_KG</td>
<td></td>
<td>192</td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Apogee Kick Motor</td>
<td>4.97x^h8261000 AKM_Wt_KG</td>
<td></td>
<td>966</td>
</tr>
<tr>
<td>2</td>
<td>Single Variable Equation</td>
<td>Launch & Orbital Operations Support</td>
<td>4.9x^h1000 LDOE_Wt_KG</td>
<td></td>
<td>1537</td>
</tr>
</tbody>
</table>

Space Mission Analysis Design FireSat equations imported directly from EXCEL into TruePlanning Equation Cost Object
Once the CER is imported into TruePlanning it become an integral part of the framework co-existing with other CERs. The CER is not subject to breakage as in an EXCEL spreadsheet and leverages additional TruePlanning capability e.g, risk analysis.
FireSat Launch Vehicle CER Development

<table>
<thead>
<tr>
<th>Level</th>
<th>Cost Object Name</th>
<th>Cost Object Code</th>
<th>Unit Cost ($K)</th>
<th>Total Cost ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Folder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Atlas II</td>
<td>$85,000,000</td>
<td>$13,700</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Atlas II A</td>
<td>$50,000,000</td>
<td>$15,000</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Atlas II AS</td>
<td>$105,000,000</td>
<td>$12,700</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Athena 1</td>
<td>$18,000,000</td>
<td>$22,500</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Athena 2</td>
<td>$26,000,000</td>
<td>$13,300</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Athena 3</td>
<td>$31,000,000</td>
<td>$9,500</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Delta II (7920,7925)</td>
<td>$52,500,000</td>
<td>$10,800</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Pegasus XL</td>
<td>$13,000,000</td>
<td>$29,300</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Saturn V</td>
<td>$820,000,000</td>
<td>$5,500</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Shuttle (IUS or TOS)</td>
<td>$400,000,000</td>
<td>$15,400</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Titan II</td>
<td>$37,000,000</td>
<td>$19,400</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Titan IV</td>
<td>$214,000,000</td>
<td>$9,900</td>
</tr>
<tr>
<td>2</td>
<td>Launch Vehicle Data</td>
<td>Taurus</td>
<td>$21,500,000</td>
<td>$15,700</td>
</tr>
</tbody>
</table>

Space Mission Analysis Design Launch Vehicle Data imported from EXCEL to TruePlanning for CER development.
Space Mission Analysis Design Launch Vehicle Data regression analysis and CER development in TruePlanning
Resultant CER based on regression analysis of Launch Vehicle data is encapsulated into a Launch Vehicle CER cost object.

This can become part of a library of CER’s including the source data.
For software, we have augmented the SMAD CERs with TruePlanning for Software. This allows a much more robust modeling of the software estimate taking into account additional parameters such as software sizing, effective lines of code and team experience.
"FireSat Model Cost Estimate Model"

Total System Estimate @ $504M
Based on:
SMAD CERs
Launch Vehicle CER Development
TruePlanning System of Systems Estimates
True Planning Software Estimates
FireSat Sensitivity Modeling

Our TruePlanning model provide a single “point estimate”. However, we want to understand:

- Sensitivity of the model to changes in CER parameters.
- The response surface or “Carpet Plot” of the model to parameter changes
- Which of the design variables drive cost – and to what extent (Design of Experiments)

Using ModelCenter 9.0 from Phoenix Integration, we can conduct these (and many other) system engineering studies.

This allows us to determine the sensitivies of FireSat CERs within the TruePlanning model
FireSat Sensitivity Modeling

ModelCenter 9.0 contains a “plug in” for TruePlanning allowing exposure of all TruePlanning inputs and outputs.

This allows the ability to take full advantage of ModelCenter System Engineering tools.

Using ModelCenter 9.0, we want to do a “Parametric Study” of the Aperture Diameter to understand how variations of Aperture size influence cost.

TruePlanning model opened in ModelCenter 9.0 showing selected inputs.
For this study we use ModelCenter 9.0 to iterate a range of aperture parameters for IR Sensor and Visible Light Sensor to examine the impact on Total Cost.
Using the Carpet Plot tool, we can examine the impact of changes to the IR and Visible Light apertures over a simultaneous range of values and visualize the impact on cost.
In addition to examining subsystems, we can also use ModelCenter to look at sensitivity of code growth to total cost.
In using the DOE tool, we can examine which of the subsystems are the largest cost drivers over a range of variation.
FireSat Sensitivity Modeling – Independent Cost Estimate

In addition to understanding the sensitivities of the data-driven FireSat model, we also want to develop an Independent Cost Estimate (ICE) using PRICE Systems cost research.

For the Hardware ICE, we construct a model using calibrated NASA historical data contained in the Satellite Subsystem Knowledge Base (SSKB)

For the Software ICE, we use the COCOMO model contained in TruePlanning
FireSat Independent Cost Estimate (ICE)

The Independent Cost Estimate substitutes the SMAD CERs with calibrated TruePlanning Hardware models.
For the ICE, we have replaced the SMAD subsystem CERs with TruePlanning for Hardware model. This allows independent modeling of the subsystems estimate taking into account historical NASA calibrations in the Satellite Subsystem Knowledge Base (SSKB).
FireSat ICE vs. FireSat SMAD CERs

TruePlanning Project Manager display all projects within the SQL database

Cross Project chart selection control

FireSat estimate $504M vs. FireSat ICE @ $550M displayed in column chart format
Benefits of Data Driven Results in TruePlanning Framework

- Ability to include CERs as part of the TruePlanning Framework.
 - Leverages additional capability such as risk analysis, escalation, activity based costing and consolidated reporting.

- Ability to have both databases of historical data points including estimating CERs within the same framework.
 - PRICE Cost Research/Calibrated can be intermingled with your own CERs thus increasing estimate fidelity.

- Integration with System Engineering tools such as ModelCenter to conduct sensitivity, Design of Experiments, optimization studies, etc.
Benefits of Data Driven Results in TruePlanning Framework

- Repository for all data used to generate the databases and CERs
 - Ability to embed the entire database including EXCEL files and trend line analysis within the TruePlanning estimate for complete auditability.

- In conjunction with the TruePlanning framework, you can integrate data-driven CERs, TruePlanning cost objects (models) and your own custom models to achieve higher fidelity estimates tied to both actual data points, calibrated data and PRICE cost research.
Zachary Jasnoff
- Solutions Architect, PRICE Systems, Rosslyn VA

- Over 25 years parametric and detailed estimating experience

- Past estimating experience includes:
 - Lockheed-Martin
 - Boeing
 - US GAO
 - JPMorgan (Risk and Resiliency)

- Graduate of Wharton/Penn Engineering

- Conducted extensive consulting assignments with DARPA, DHS and DoD

- Presented courses in
 - hardware estimating,
 - software estimating,
 - life cycle cost,
 - Cost Estimating Relationships,
 - Information Technology,
 - risk analysis and
 - supplier assessment

- Developed TCO/Risk model for the banking industry

- Presented papers at DoDCAS, ISPA/SCEA, ISACA, DJR and PRICE Systems Symposia