

Revolutionary Research . . . Relevant Results

46th Annual NDIA Gun & Missile Systems Conference Non-Traditional Weapons I

Development of a Large Caliber Naval EM Railgun

Mr. Roger Ellis / Mr. Ryan Hoffman Office of Naval Research

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

Is this what you think of when you hear RAILGUN?

80 cm German Gun "Dora" circa 1942

THINK AGAIN!!

9/22/2011

2

ONR Shaping S&T Investment

Innovative Naval Prototypes

INP Objective

- Explore high-risk, game-changing technologies
- Provide a venue to experiment with innovative technologies to advance the capabilities of the Warfighter
- Reduce the acquisition risk of disruptive technologies and capabilities

PLUS

FEL

SBE

INTOP

Technical Approach

- Transition investments within 4 to 8 years
- Leverage previously untapped D&I investments
- Force function on the basic and applied research community
- Move the risk from acquisition (\$B) back to S&T (\$M)
- Accept higher technological risk than FNCs
- Cultivate significant high level interest (Executive Steering Committees from SECNAV, OPNAV, SYSCOM and S&T communities)
- Useable prototype available at completion
- Deputy PMs from acquisition PEOs to facilitate transition

Primary S&T Focus Areas

- Affordability, Maintainability, and Reliability
- Information, Analysis, and Communications
- Survivability and Self Defense

Current INP Projects

- Electromagnetic Railgun
- Sea Base Enabler
- Tactical Satellites
- Persistent Littoral Undersea Surveillance
- Free Electron Laser
- Integrated Topside

Distribution A: Approved for public release; distribution is

C E N H 5

ONR

Counter-Directed Energy

Rotary Wing Aircraft

1 tim

APPLICATION

00 - 13-

SYSTEM ONR Curre

APPLICATION

SYSTEM ONR TRACK DOLLAR

Directed Energy

Electromagnetic Weapons

SYSTEM INR STREET, SQUARE, SQUARE,

Naval Air Warfare and Weapons Code 35

How Railgun Works

9/22/2011

- Electrical energy vs. chemical propellants for projectile launch
 - Enables variable velocity
 - Optimized in-bore acceleration profile
- Non-electrical conducting barrel structure
- Greater launch velocities than conventional (2.5km/sec)
- Greater ranges (200+nm)
- **Enables non-round bore geometries**
- Ballistic trajectory with guided projectile correction
 - Endo-exo-endo
 - Aerodynamic profile
- Kinetic energy kill through dispensed fragments variable height of burst

Railgun Operational Impact

- Wide Area Coverage
 - Increased speed to target
 - 200+ NM
- Accelerates operational tempo
 - Faster attrition of enemy personnel and equipment
 - Operation timeline shifts left
- Reduces Cost per Kill
 - Lower Unit Cost
 - Lower handling cost
- Enhances Safety
 - No risk of sympathetic detonation
 - Simplified storage, transportation and replenishment
 - Reduced collateral damage
 - No unexploded ordnance on battlefield
- Reduces Logistics
 - Eliminates gun powder trail
 - Deep magazines

- Multi-Mission Capability
 - Surface Warfare
 - Missile Defense
 - Long Range Fires
 - Direct Fire
 - ASuW

Multi-Mission Capable for Offense and Defense

EM Railgun INP Phase I

	FY05		FY06	▲ FY	07	▲ FY08	▲ FY09	FY10) FY11
Milestones	Program Initiation August 2005					World Record Launch 10MJ	Initial 16MJ Test Capability		
Launcher Bore Life Development						32MJ Lab Gun	Bore Life Developm	nent	32 MJ Launcher 100 Shot Bore Life Demo
Advanced Containment Development	3 Conce Desig		BAE General A	tomics	Techn and F	ology Developme Preliminary Desig	ent n Detail Desig	n Fabrica	32 MJ Launcher 100 Shot Bore Life Demo
Pulsed Power System Development				For Launcher	Testing 10 Genera Atomics		Alt	ernative Studies	Bed Pulsed Power Recommendation
Integrated Launch Package Development	01	Ca	Boeing Draper Governme pncept rades	Comp	aseline Des onent Deve	sign & Critical lopment Unitary Lethality Demo	Baseline De Dispense Demo	esign Critical Component Demos	Integrated Launch Package (ILP) Demos

Progress FY05 – FY11

Lab Launcher

GA Med-Cal Blitzer (IRAD)

Rep-Rate Test Bed

Dispense Test Slide 10

- Muzzle energy:
 - From 6MJ to 32MJ
- Bore Life
 - From 10s to 100s
 - Multiple configurations & materials
- Industry Launcher Prototypes
 - From concept to hardware
- Pulsed power
 - From single shot
 - To multi-shot capable design
- Projectile
 - From slugs & sand catch
 - To instrumented and dispensing flight bodies on open range
- Mission
 - From Land Attack
 - To Multi-Mission Initiative

The industry developed Advanced Containment Launchers (ACLs) detailed designs are competition sensitive and each include unique materials, however they both share the following attributes:

- Advanced composite containment designs
 - Advanced insulator materials

 5-meter version of 10-meter ACL recently tested at EMLF (1/2011) with full-scale bore (cross-section), breech, muzzle and mount.

'Blitzer' Testing at DPG

- Full-length ACL in production.
- BAE 10-meter ACL scheduled to be delivered to the Electromagnetic Launch Facility (EMLF) at NSWC Dahlgren and complete testing during the 4th quarter of FY2011

Gun Launch

Distribution A: Approved for Public Release Distribution is Unlimited

EM Railgun INP Phase II

	FY12	FY13	FY14	FY15	FY16	FY17
Rep-Rate Pulsed Power	Prototype	Fabrication &				Demo
Rep Rate Lab Launcher with Auto-Loader	Design 5MJ Rep-Rate	Fabrication &	Install	Initial Rep-Rate	(Enab	Rep-Rate Demo les 100+ NM application
Rep Rate Industry Launcher	Concept Desig	gn Pre	eliminary – Detail De	sign and Fabrication	Industry Lau	Incher Rep-Rate Demo

INP II Focused on Rep-Rate and Thermal Management

Railgun INP Contact Information

Mr. Roger Ellis (Program Manager) Office of Naval Research (Code 352) 875 N. Randolph Street Arlington, VA 22203 703.696.9504 roger.ellis@navy.mil

CDR Michael Ziv (Deputy PM)

Naval Sea Systems Command Directed Energy / Electric Weapons (PMS-405) 1333 Isaac Hull Ave SE Washington Navy Yard Washington, DC 20376-5013 Phone: (202)781-3975 Cell: (202)306-0976 michael.ziv@navy.mil