

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

April 13, 2011

Duncan Park, S. Moy, T. Manning, E. Rozumov, D. Chiu, and A. Eng

U.S. Army RDECOM-ARDEC, Picatinny, NJ

duncan.park@us.army.mil; 973-724-4398

Distribution A: Unlimited Distribution. Approved for public release.

- Approach
- Results
- Summary and Conclusions
- Acknowledgments

2

OBJECTIVES

Goal

RIJEHN

Develop high energy and less sensitive propellants to minimize soldier and weapon platform vulnerability from unplanned stimuli

- Technical Objectives:
 - Maintain High Performance:
 - Performance Baseline → JA2 propellant in M829A2
 - Lower the sensitivity of propellants against:
 - Shape charge jet (SCJ):
 - Spall:
 - No anomalies in gun environment:
 - Test fire in a sub-scaled gun \rightarrow 30 mm gun firing

APPROACH

Formulation

- Use less sensitive ingredients
- Use less of energetic solid fills
- Conduct various characterization tests
 - To observe any trends
 - To discriminate and downselect formulations
 - Tests/Calculations conducted:
 - Closed bomb
 - Interior ballistic (IB) calculation
 - Erosivity Calculation
 - Critical diameter
 - Shock initiation sensitivity \rightarrow predictor against shock stimulus
 - Uniaxial Compression (Mechanical Properties)
 - Hot fragment conductive ignition \rightarrow predictor against spall threat
 - Small scale (1.77 lbs) and 5 lb SCJ ballistic pendulum → predictor against SCJ threat
 - 30mm gun firing (to be completed)

Most of the work was performed during 2005-2008

RESULTS: Muzzle Velocity and Erosion

5

Theoretical Muzzle Velocity and Erosion Prediction

				Relative			
	Solid Load	Relative Muzzle	Tflame	Erosivity			
Formulation	(wt%)	Velocity (%JA2)	(K)	(%JA2)			
JA2	0	100	3450	100			
А	40	103	3454	72			
С	50	103	3558	92			
D	30	102	3348	57			
E	40	102	3486	80			
F	40	102	3432	70			
G	40	102	3362	58			
Н	25	101	3299	52			
l I	25	101	3290	51			
J	0	99	3043	32			
K	20	100	3246	46			
L	10	99	3138	38			
М	0	98	3149	41			
В	40	102	3454	72			
Relative Muzzle Velocity Range: 98-103%							
Relative Erosivity Range: 32-92%							

RESULTS: Shock Sensitivity

Critical Diameter and Shock Initiation

Critical Diameter Setup

RDECOM

Shock Initiation Setup

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Distribution A: Unlimited Distribution. Approved for public release.

Shock Sensitivity of iRDX Based Propellants

RESULTS: Shock Sensitivity (Cont.)

Effect of Solid Load on Shock Sensitivity

RDECOM

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RESULTS: Mechanical Properties

9

Trends in Mechanical Properties

Polymer: Plasticizer Ratio	Mech. Prop.	Solid Load (wt%)
1.03	Best	40
1.36	Good	40
2.11	Accept.	40
1.5	Best	0
4	Accept.	0
	Mech.	Polymer:
Solid Load (wt%)	Mech. Prop.	Polymer: Plasticizer Ratio
Solid Load (wt%) 0	Mech. Prop. Best	Polymer: Plasticizer Ratio 1.5
Solid Load (wt%) 0 10	Mech. Prop. Best Good	Polymer: Plasticizer Ratio 1.5 1.36
Solid Load (wt%) 0 10 20	Mech. Prop. Best Good Good	Polymer: Plasticizer Ratio 1.5 1.36 1.36
Solid Load (wt%) 0 10 20 30	Mech. Prop. Best Good Good Good	Polymer: Plasticizer Ratio 1.5 1.36 1.36 1.36
Solid Load (wt%) 0 10 20 30 40	Mech. Prop. Best Good Good Good Good	Polymer: Plasticizer Ratio 1.5 1.36 1.36 1.36 1.36 1.36

RESULTS: Young's Modulus

10

Uniaxial Compression (Mechanical Properties)

Four Downselected Propellants Uniaxial Compression, -32 C

RDECON

RESULTS: Thermal Sensitivity

Hot Fragment Conductive Ignition

Ignition Level

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

SD=490C

RESULTS: Downselection

12

Ranking for Downselection

Formul- ation	Vel. Ranking	Erosiv. Ranking	Shock Init. Ranking	HFCI T _{ig} Ranking
JA2	10	13	-	-
А	2	10	10	8
С	1	12	11	-
D	6	7	1	9
E	3	11	11	-
F	4	9	9	7
G	5	8	8	6
Н	8	6	6	4
1	7	5	1	-
J	12	1	1	2
K	9	4	6	5
L	11	2	1	1
М	13	3	1	3

•Formulations H, J, K, and L were downselected

RESULTS: Small Scale SCJ Test

Small Scale SCJ Ballistic Pendulum Test Setup

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

14

Small Scale Ballistic Pendulum Tests

Distribution A: Unlimited Distribution. Approved for public release.

RESULTS: 51b SCJ Pendulum Test

15

5lb SCJ Pendulum

RESULTS: Shock Sensitivity of End Item

5lb SCJ Pendulum Test Sample vs End Item Loading Configuration

RDECON

Propellant Sticks loaded in 6 in x 6 in Cardboard Tube

Cardboard Tube Source: Boyd, K. et. al., ARL, MD (Aug 2006)

Tank KE Charge Configuration Source: ATK, Radford, VA

- Formulation H has lower critical diameter of bed than JA2
- It may not react violently in actual charge configuration due to space made by projectile
- Further testing is needed to confirm this

RESULTS: Gun Firing

17

60mm Gun Firing

- One slot became available in Novel Energetics Material ATO
- Formulations H was selected to test (before 5lb SCJI pendulum test data was available)
- 60mm Gun:
 - sub-scaled from 120mm
 - Base pad electrothermal-chemical (ETC) igniter
- Formulation H performed better than JA2 as expected
- Formulation K was not test fired but should have similar performance as JA2
- Some shots displayed high negative delta P
 - Data under further evaluation
 - Blocked pressure ports on several shots

SUMMARY and CONCLUSIONS

- Eighteen IM gun propellant formulations were thoroughly characterized in this program
 - One formulation met performance requirement and had better IM properties than JA2
 - One formulation exceeded performance requirement and had better IM properties than JA2 except against SCJ – critical diameter of the bed is smaller than that of JA2
 - This formulation also had higher ballistic efficiency than JA2 in the 60mm sub-scale gun firing
 - Two formulations had slightly lower performance than required but had much better IM properties than JA2
 - All Four formulations mentioned above have much lower erosivity than JA2

Patent Pending

AKNOWLEDGMENTS

19

- Dr. Pai Lu Consultations and mentoring
- Dr. Brian Fuchs, Ms. Amy Wilson, and Mr. Gerard Gillen for Critical diameter, Shock initiation, and other safety testing
- Dr. Avi Birk and Mr. Steve Aubert's Team for HFCI and Small scale SCJ pendulum testing
- Mr. Charlie Leveritt and Dr. Stephanie Piraino for erosion calculations and good technical exchange
- Drs. Rob Lieb and Stephanie Piraino for Uniaxial compression test and SEM
- Dr. Barrie Homan for Closed bomb and Strand burn testing
- Mr. Ken Klingaman for Closed bomb and Critical diameter testing
- Mr. Kevin Boyd for 5lb SCJ Pendulum testing
- Dr. Jim Luoma for 60mm gun firing
- Mr. Joe Colburn for 30mm gun firing
- Dr. Pat Baker and Ms. Nora Eldredge for program management and funding