





## Development and Manufacture of an Insensitive Composition B Replacement Explosive IMX-104 for Mortar Applications

#### 46th Annual Gun & Missile Systems Conference & Exhibition

\* Virgil Fung, Mike Ervin, Brian Alexander BAE SYSTEMS Ordnance Systems Inc. Holston Army Ammunition Plant, TN, USA Charlie Patel, Philip Samuels, Leila Zunino U.S. ARMY PM-CAS Picatinny Arsenal, NJ, USA





### **Briefing Outline**

- Program Goals & Background
- Formulation Development
- Material Characterization
  - IM Testing (IMX-104 in 81mm and 120mm Mortar)
  - IMX-104 Qualification Status
- IMX-104 Large Scale Manufacturing
- Concluding Remarks
- Acknowledgements



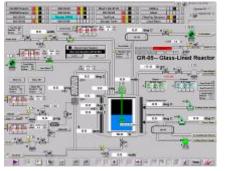
### Program Goals & Background

- PM-Mortars funded PAX-21 Product Improvement Program (PIP) for the 60mm Mortar with the primary goals:
  - Replace AP in PAX-21 (environmental issue)
  - Achieve PAX-21 or better performance
  - Achieve PAX-21 or better IM Response
- Secondary goal utilization of ingredients manufactured on production scale at Holston in these new formulations:-
  - RDX, HMX (conventional Holston ingredients)
  - DNAN, NTO, TATB, HBD NQ (new ingredients)
- Utilizing manufacturing technologies that were a good-fit for the U.S. Industrial base
  - Traditional Melt-pour processing
  - Large capacity equipment
    - Recrystallization
    - Incorporation, drying & flaking of product
    - Dry Fluid Energy Milling of ingredients as required (a contributing technology)





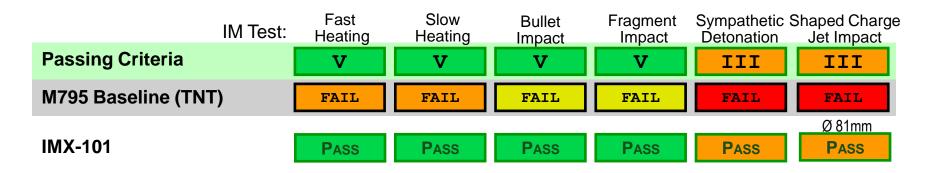
### Insensitive Ingredients


- DNAN, NTO and NQ inherently less sensitive than traditional high explosives and melt base ingredients
- Selected as materials for scale-up and production at Holston because of their perceived benefits and adequate suitability with the existing infrastructure
- Now STANDARD PRODUCTS from Holston Army Ammunition Plant
  - Manufactured in Agile Facility at Holston














### Insensitive Explosive Formulations

- Development Efforts resulted in several new formulations, the most promising of which include:
  - IMX-101 (formerly OSX-CAN) for Artillery Ammunitions
    - Achieved the best IM results in full-scale ammunition trials:-



- IMX-101 is QUALIFIED by the U.S. Army as a main charge explosive and TNT replacement. Type (system) qualification evaluation for Artillery Ammunition is completed
- IMX-104 (formerly OSX-7) (DNAN, RDX, and NTO) for Mortars
  - Qualified by the U.S. Army as a main charge explosive and Composition B replacement
  - Type (system) qualification testing will be performed in FY 2012
- PAX-48 (formerly OSX-8) (DNAN, HMX, and NTO) for Mortars and Direct-Fire Ammunition
  - Qualified by the U.S. Army as a main charge explosive for the 120mm IM HE-T Ammunition



### Formulation Development - Overview

- Two formulations of greatest interest to OSI Customers
  - IMX-104 (DNAN, NTO and RDX based)
  - PAX-48 (DNAN, NTO and HMX based)
  - Both formulations possess energetic performance similar to Composition B

#### Typical Properties of IMX-104 and PAX-48 Versus Traditional Mortar Fillings

| Material | TMD (g/cc) | VOD<br>(% Comp B) | LSGT<br>(50% Card Gap) | Reference             | Scale of<br>Manufacture  | DSC MP /<br>Exotherm Onset<br>( C) | Efflux<br>Viscosity<br>(sec.) @ 96 C |
|----------|------------|-------------------|------------------------|-----------------------|--------------------------|------------------------------------|--------------------------------------|
| TNT      | 1.65       | 84                | 133                    | MSIAC                 | 1,200 – 1,500            | -                                  | -                                    |
| Comp B   | 1.76       | 100               | 207                    | LLNL/NOL              |                          | 80 / 215                           | -                                    |
| PAX-21   | 1.72       | 83                | 161                    | UTEC/ARDEC            |                          | 89 / 193                           | < 10                                 |
| IMX-104  | 1.73       | 95/92 *           | 118                    | OSI/GD-OTS<br>Canada* | LB Full Production Scale | 89 / 213                           | < 10                                 |
| PAX-48   | 1.76       | 93/91 *           | 110                    | OSI/GD-OTS<br>Canada* |                          | 93 / 231                           | < 10                                 |

- Both are proving worthy candidates for evaluation in IM Mortar applications
  - Undergoing evaluation in USA and Europe
  - IMX-104 & PAX-48 both achieved U.S. Army Qualification status (as explosive material) in the U.S.

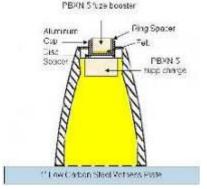


### Formulation Development – Performance Comparison

 IMX-104 and PAX-48 designed to have performance similar to Composition B










IMX-104

PAX-48

Comp B





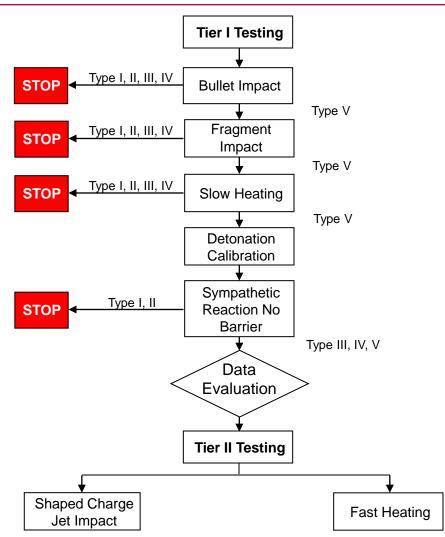





120mm mortar ogive (initiation test set up)



# Formulation Development Large Scale Manufacturing Process Development


- IMX-104 & PAX-48
  - Large scale manufacture in Holston production equipment (1200 lb. batch)
  - Material supplied to PM-CAS for loading into mortars for IM Testing, and to General Dynamics for the 120mm IM HE-T Program
  - Both formulations successfully scaled up with adequate processability





### IM Assessment Testing in Mortar Ammunitions

- US ARMY PM-CAS Common Low-cost IM Explosive Program (CLIMEx) Phase 2
  - Evaluation of IM explosive candidates as Comp B replacement in 81/120mm Mortar
  - IMX-104 and PAX-48 selected as OSI's candidates
  - Also evaluated were candidates from other manufacturers including melt- pour, cast-cure and pressable explosives





### IM Assessment Testing – Baseline Test Results

Reactions: VI No Sustained Reaction Burn Deflagration Explosion Fartial Detonation Deton

| IM Test:             | Fast<br>Heating | Slow<br>Heating | Bullet<br>Impact | Fragment<br>Impact | Sympathetic<br>Detonation | Shaped Charge<br>Jet Impact |
|----------------------|-----------------|-----------------|------------------|--------------------|---------------------------|-----------------------------|
| Passing Criteria     | V               | V               | V                | V                  | III                       | Ш                           |
| 60mm (Comp-B/PAX-21) | <b>Ⅱ</b> V**    | III II**        | V                | III                | ( I )*                    | ( I )*                      |
| 81mm (Comp-B)        | ( II )*         | (II)*           | (III)*           | (III)*             | ( I )*                    | ( I )*                      |
| 120mm (Comp-B)       | II              | I               | I                | I                  | ( I )*                    | ( I )*                      |

<sup>\*</sup> Assessment -- not tested

## 60mm

0.8 lb (1.8kg) PAX-21/Comp B

## 81mm

2.0 lb (4.4kg) Comp B



6.6 lb (14.5kg) Comp B

Results and images courtesy of PM-CAS

<sup>\*\*</sup> with PAX-21 and Intumescent Coating



### IMX-104 IM Test Results (81/120 mm Mortar) – Summary







Fragment Impact 120mm (TYPE V)

SD



Fast Heating 81mm (TYPE V)



Sympathetic Detonation 81/120mm (TYPE III)





Slow Heating 81/120mm (TYPE V)

SH



### IMX-104 IM Test Results - Summary

| Reactions:              | VI<br>o Sustained<br>Reaction | V<br>Burn       | IV<br>Deflagration | III<br>Explosion           | II<br>Partial<br>Detonation | I<br>Detonation             |
|-------------------------|-------------------------------|-----------------|--------------------|----------------------------|-----------------------------|-----------------------------|
| IM Test:                | Fast<br>Heating               | Slow<br>Heating | Bullet<br>Impact   | Fragment<br>Impact         | Sympathetic<br>Reaction     | Shaped Charge<br>Jet Impact |
| Passing Criteria        | V                             | V               | V                  | V                          | Ш                           | III                         |
| 81mm (Comp-B) Baseline  | ( II )*                       | ( II )*         | (III)*             | (III)*                     | ( I )*                      | ( I )*                      |
| 81mm (IMX-104)          | V                             | V               | 12.7mm 7.62mm V    | 8300 ft/s 6000 ft/s III IV | Ш                           | I                           |
| 120mm (Comp-B) Baseline | II                            | I               | Ι                  | I                          | ( I )*                      | ( I )*                      |
| 120mm (IMX-104)         |                               | V               | IV                 | V                          | III                         |                             |

- Engineering IM Tests in the M934A1 120mm Mortar and M821A2 81mm Mortar with IMX-104 show significant improvement in IM properties over baseline Comp B
- IMX-104 selected as the prime candidate as an IM Comp. B replacement for Mortar Ammunitions for the US ARMY

<sup>\*</sup> Assessment -- not tested



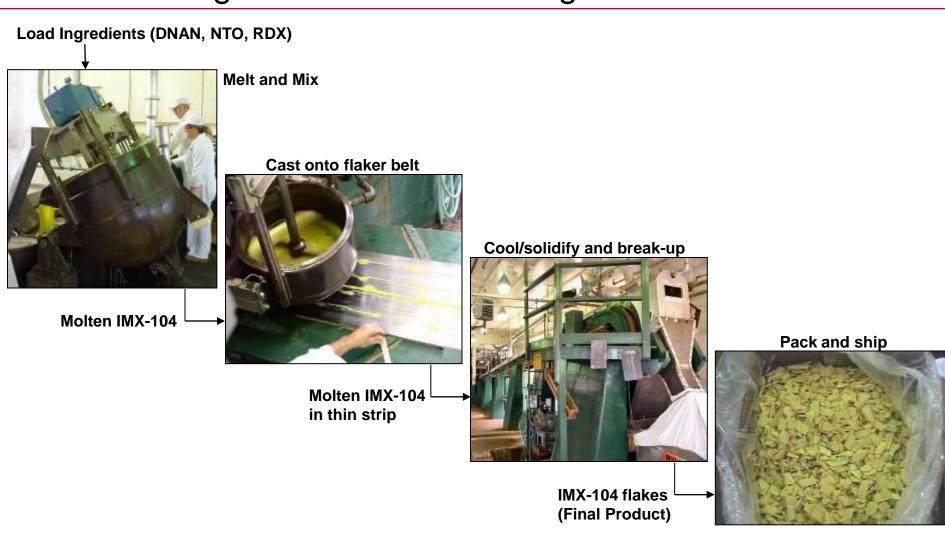
#### **IMX-104 Material Qualification Status**

- IMX-104 material qualification began in late 2009
- Follow protocols as per NATO Allied Ordnance Publication AOP-7 Qualification Procedures for the United States
- All tests including accelerated aging are now completed and PASS ratings achieved across the board
- Test results presented to the US DOD Energetic Material Qualification Board (EMQB) in June 2011
  - Material qualification granted








### **IMX-104** loaded Mortars Insertion Schedule

- IMX-104 type qualification currently in progress
  - 81mm mortars
  - Extensive evaluation testing including
    - IM System Tests
    - Environmental/Aging Tests
    - Gun Launch Survivability Tests
    - Range and Accuracy
    - Lethality / Fragmentation / Initiation

| End Item                                  | Current Main<br>Charge Explosive | IM Main Charge<br>Explosive | Project Start<br>Date | ECP Date |
|-------------------------------------------|----------------------------------|-----------------------------|-----------------------|----------|
| 60mm Mortar<br>(M720A1/M768/M888)         | PAX-21                           | IMX-104                     | 2007                  | FY 2013  |
| 81mm Mortar<br>(M821A2/M889A1/<br>M889A2) | Composition B                    | IMX-104                     | 2007                  | FY 2012  |
| 120mm Mortar<br>(M933A1/M934A1)           | Composition B                    | IMX-104                     | 2007                  | FY 2013  |



## IMX-104 Large Scale Manufacturing Overview





### **IMX-104 Manufacturing Process Development**

- Processing Parameters identification
  - Processing temperatures at various stages
  - Ingredient Feed Rate & Order of Addition
  - Use of dry/wet ingredients
  - Final Incorporation (mixing) Time
  - Agitator Speed
- Material Processibility indicated by Efflux
   Viscosity and consistent Product Homogeneity
  - Composition, sensitivity and other physical/chemical properties testing
- Close interaction with ARDEC EM and LAP Producibility Teams
- Continuous Improvement and Process Optimization







### **IMX-104 Manufacturing Process Summary**

- Current batch size over 1300 lb (> 600 kg)
- Over 90,000 lb (> 41000 kg) of IMX-104 had been manufactured at HSAAP
  - Support US ARMY Mortar Loading Trial and Qualification
  - Round-the-clock operation
- Although process is relatively young, it can be considered as robust and repeatable
- Process optimization planned for FY 2012
  - Design of Experiment technique to evaluate various process parameters
  - Reduce process cycle time to lower overall product cost
  - Collaborate with Loading Facility in the evaluation of suitability in loading operation



### **Concluding Remarks**

- A NEW GENERATION of IM melt-pour explosives now available
  - IMX-104 demonstrated excellent IM properties over Composition B
- Low-cost replacement for Composition B
- Reduced shock sensitivity vs. Composition B (and PAX-21)
- Ingredients readily available and manufactured at Holston
- Robust large scale manufacturing process for IMX-104
- Viable candidate for common fill across all mortar sizes
  - Insertion for 81mm by FY 2012, 60mm and 120mm mortar by FY 2013
- Achieved significant IM improvement over current munitions
- Significant National and International interest
  - Insensitive Composition B replacement in other weapon systems



### Acknowledgement

- RDECOM-ARDEC
  - Mr. P. Vinh, Mr. A. Di Stasio, Ms. L. Zhao
- PM-CAS / PM Mortars / ARDEC
  - Mr. J. Rutkowski, Mr. P. Samuels, Mr. C. Patel, Mr. B. Kuhnle, Ms. W. Balas Hummers
- BAE SYSTEMS OSI
  - Mr. A. Carrillo, Mr. P. Lucas, Dr. D. Price, Mr. M. Hathaway, Mr. E. LeClaire, Ms. L. Hale, Mr. B Schreiber, Ms. D. Bowyer
  - Plant Operators in the Explosive Finishing Area
- NTS Camden
  - Mr. D. Mann, Mr. M. Brian