

Presentation for the 46th Annual Guns and Missiles Conference

Development History and Evolution of the XM982 Excalibur Chris E. Geswender cegeswender@raytheon.com David Brockway dabrockway@raytheon.com April 13, 2011

NOTE — All equations, weapon descriptions and equipment-specific information are from open (Internet) sources without correlation to U.S. products to avoid ITAR or classification issues.

Copyright © 2011. Unpublished Work. Raytheon Company. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.

Contains Excalibur Technical Data Approved for Public Release. PAO Log 36-11

Excalibur Description

- GPS-guided, extended-range 155 mm artillery projectile
- Precision and accuracy consistently within 10 meters
 - Minimizes collateral damage and risk to civilians
 - Employment flexibility close support missions
 - Achieves target effects with fewer rounds
- Steep terminal approach angle optimizes unitary effects
 - Ideal for urban, complex and mountainous terrain
- Significant maneuverability supports offset firing
- Integral multi-option fuze point detonate, delay and HOB
- U.S. and Sweden international cooperative program
- Initial capability (XM982 la-1) fielded to deployed forces in 2007
- Fully ORD-compliant M982 la-2 pending full-rate production
- Low cost M982E1 Ib in final design and qualification phase
- Exportable since 2008 Excalibur Ia FMS cases in progress
- Current platforms
 - M777
 - M109A6
 - M198
 - FH77BW
 - AS90 (limited qual)

FH77BW Archer — Sweden

AS90 — U.K.

M109A6 Paladin — U.S. Army

M777 — U.S. Army, USMC, Canada

M198 — Australia

Responsive, accurate and lethal precision effects

Approved for Public Release. PAO Log 36-11

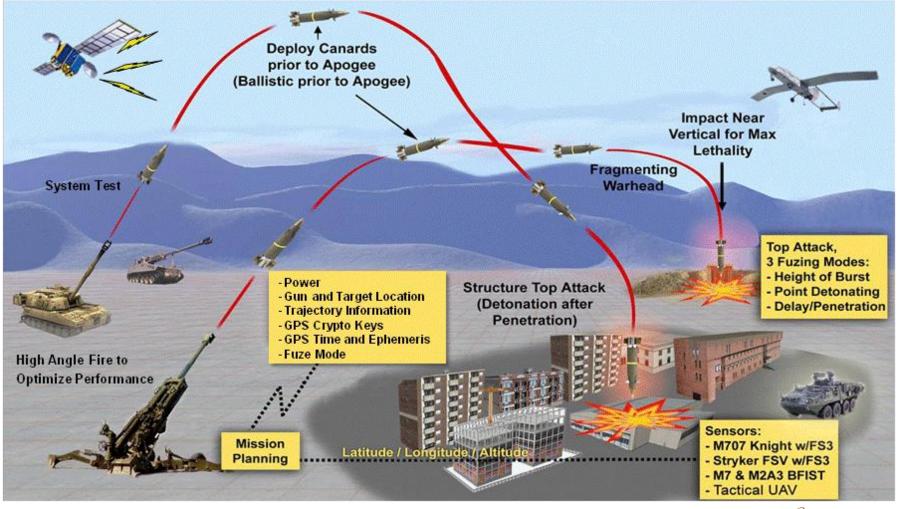
IRAQ Urban Combat Experience — Avoiding Collateral Damage

Warfighter perspective on Excalibur

- "Incredibly accurate ... at its minimum/maximum range, you get that same level of accuracy"
- Easy to use "Firing Excalibur was similar, if not easier, than firing conventional artillery"

 More responsive than air-delivered assets
"Every soldier and Marine has access because the artillery directly supports every battalion and company in contact"

Saving lives today — "The unit was able to fire an artillery round at a target within 50 meters of infantrymen on the ground. If we did not have Excalibur, we would not have been able to engage that target."



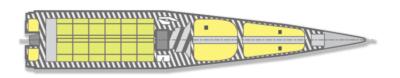
Raytheon

Missile Systems

Operational Concept

Approved for Public Release. PAO Log 36-11

Excalibur Warfighter Rationale


- Extended-range fire extends maneuver's tactical reach
- Range-independent ten-meter Radial Miss Distance and offaxis capability increase operational flexibility
- Close-combat capability reduces risk to friendly forces while protecting civilians and minimizing collateral damage
- Near-vertical terminal attack angle permits urban and complex terrain uses
- Concrete penetration, integrated multiple-mode fuze, scalable effects — expands cannon artillery target set – Point detonate, Delay, Height of burst
- Fewer rounds to achieve target effects minimizes logistics burden
- Minimal change to unit-level training and TTP

Autonomous, all-weather, day and night — responsive, organic firing capability

Original Excalibur Concept Was a Radical Departure From Initial Army Plans

- Government design (ARDEC)
- LCCM guidance
- Tractor rocket motor
- IMU N/A
- GPS unknown
- Warhead(s)
 - XM-80 bomblets
 - One SADARM

- Fixed tail
- CAS two axis
- IMU FOG
- GPS IEC
- Payloads via Block Insertions
 - DPICM changed to Unitary warhead in '01
 - Smart sub-munition 2 SFMs (SADARM)
 - Discriminating munition
- No propulsion

www.globalsecurity.org/military/systems/munitions/images/

Designing for Operational Challenges

- Gun hardening
 - Multiple charges
 - Angular acceleration variation (also a worn gun barrel issue)
 - Muzzle exit over pressure decay profile
 - Variable spin rate at tail fin deployment
 - Effective gas flow, engraving
 - Muzzle brakes
 - Ramming/handling
- Operational
 - EPIAFS
 - Carrier frequency
 - Message protocol
 - Integration with AFATDS
 - 20-year storage life
 - Handling
 - Training

NDIA 2002 Gun & Ammunition Symposium 18 April 2002 120.10 Non Technical Data as defined under ITAR

Naive Engineering Toolbox Slowed Early Progress

Raytheon Missile Systems

- Models/analysis/understanding
 - FEA modeling transient loads, high-pressure differentials
 - Material science strength of materials to transients, elasticity/tear
 - Pressure management obturation, muzzle exit
 - Base design spin/overpressure/muzzle brake design tools
- GPS
 - Clock loss of time reference
 - Vendors, orientation, suspension
 - Evolution new environments
 - Hardware, software, integration
- IMU
 - FOG did not gun harden spool too fragile
 - MEMS #1 did not gun harden masses too large
 - MEMS #2 did not gun harden almost
- CAS
 - Two to four axis required
 - Increased span on canards
- Affordable testing
 - Early, aggressive gun engineering testing
 - Capable, affordable OBR development and use

Excalibur Evolved With the Market

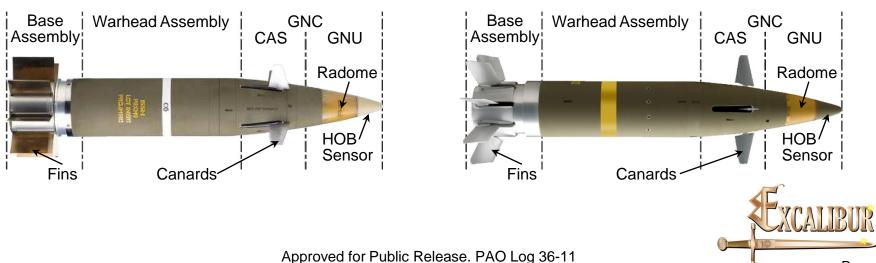
- Major program restructure affects SDD (2001-December 2002) merger with Swedish TCM; transition from DPICM to Unitary
 - Block I to Increment la
 - Structural design and testing to be done early
 - Critical components were still technologies not products
- Early fielding (April 2004) to full compliance (October 2007)

- Test-structured, early program paid big benefits in execution
- Clever algorithm design makes things possible without hardware changes
- Cost improvement; increased reliability; new, more stringent A/J requirement September 2008 to present)

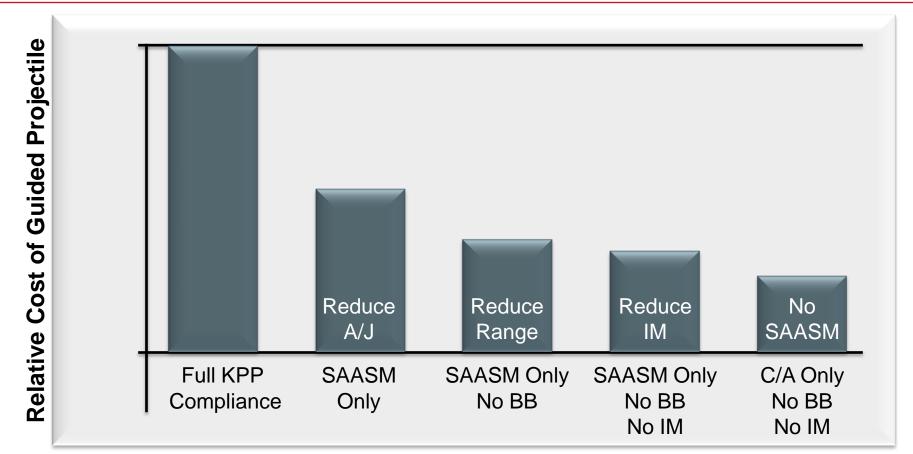
la-2 to lb

la-1 to la-2

- Pay attention to cost, cost, cost
- Systems expertise in many areas critical to good architecturing and execution

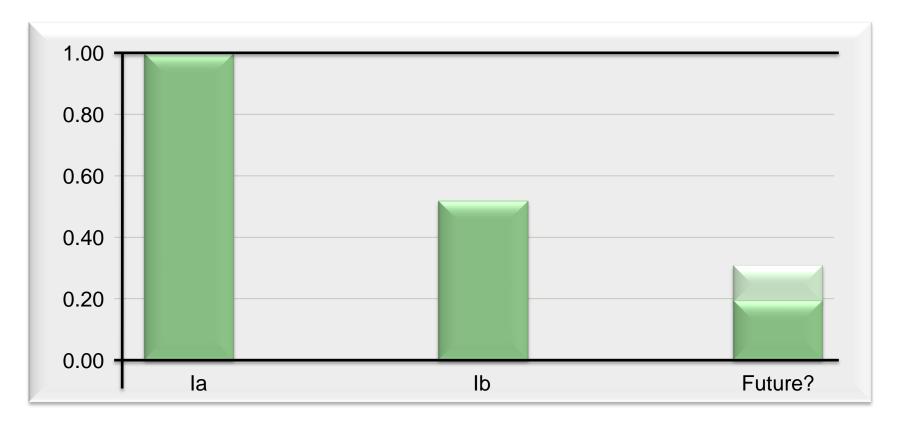

Demonstrated Capability Exceeded Some Requirements

Requirements Comparison Summary											
KPP	Threshold			Objective				Demonstrated			
	la-1	la-2	lb	la-1	la-2	lb		la-1	la-2	lb	
Precision (CEP)	20 m	20 m	10 m		10 m	6 m		<6m	<6m	<5 m	
Maximum Range	24 km	35 km 39-Cal 50 km 52-Cal	35 km 50 km	—	40 km 60 km	40 km 60 km	>	>24 km	41 km 39-Cal	>32 km 39-Cal >46 km 52-Cal	
Reliability	60%	85%	93%	—	96%	96%		85%	85.9%– 91.5%	93% for shoot-off	
Lethality	Effe	ectiveness <u>></u> M	Effectiveness \geq M107				Effectiveness <u>></u> M107				


Increment la

Increment Ib

Specifications Drive System Cost



Majority of architecture costs driven by requirements (A/J requirement sets major architecture population)

Presentation to 43nd Annual Gun & Missiles Conference April 23, 2008 Alternatives for Architecturing Low Cost Guided Projectiles

What Is the Future Cost of Precision?

Requirements and technology (and production quantity) likely to continue to have a significant impact on the future

PM Excalibur presentation to Future Artillery Conference 25 April 2011 120.10 Non Technical Data as defined under ITAR

Excalibur Benefits the Warfighter

- Excalibur was the first and still the only fielded, autonomous, precision-guided, extended-range artillery projectile
 - GPS/IMU
 - CAS
 - Finned base
- When we started, we were unable to see the course
 - The industrial base overestimated readiness at SDD start
 - Analysis/models were naive
 - Impulsive loads pressure variation SOM under impulse
 - Requirements evolution increased the challenge (increased AJ, new payload, platform...)
- Increased experience denoted the turning point
 - Chasing subtle problems in IMU and GPS
 - Mechanical failures solved
 - A baseline set of tools and processes available
- More capable and able to evolve
 - Activities based on cost reduction, reliability improvement, large industry investment
 - ARDEC/RMS successfully supported warfighter

Progress flowed from solid engineering and operational lessons

