

# O-Ring Safety Barriers for Rocket Motor Ignition Systems

Brian Erickson ATK Advanced Weapons Division

46<sup>th</sup> Annual NDIA Guns & Missile Systems Conference & Exhibition August 30, 2011 Miami, FL





- Discuss explosive train vs pyrotechnic ignition train safety barrier types and how they differ
- Discuss basic operation and design considerations for pyrotechnic barrier systems
- Discuss "Stiction" a significant seal design consideration
- Conclude with demonstrating a need for a recognized protocol in establishing ignition train safety and reliability



A safety barrier is intended to interrupt ignition transfer between firing train elements as the primary safety feature in Safe and Arm (S&A) or initiation devices.

• Example, a "rotor" in a fuze S&A

#### **Pyrotechnic Barrier versus Explosive Train Barrier**

- Both prevent initiation of the next firing train element
- Explosive train barrier prevents detonation by blocking a shock wave output from a detonator from effectively reaching the next element in the detonation train
- Pyrotechnic barrier prevents ignition (deflagration, not detonation) by sealing hot gases and inhibiting a flame front from reaching the next element in the ignition train

#### Both types of barriers present design challenges

- Both are highly dependent on arming environments
- Pyrotechnic barrier needs a higher level of seal integrity
- ATK has extensive experience in developing both types of barriers
  - ATK is an industry leader in the development and production of fuzes and S&A devices for various types of munitions as well as in Rocket Motor Ignition Safety Devices (ISDs)

ATK Has Successfully Integrated Commercially Available O-rings as a Pyrotechnic Barrier in Rocket Motor Ignition Systems



Removal of the o-ring barrier during a valid weapon arming environment allows the firing train to function properly.

## Robust environments must exist for removal of the barriers, examples

- Setback
- Pressure
- Spin

## **Pyrotechnic Barrier configurations:**

- Piston inside a cylinder (single o-ring)
- Sleeve around a manifold (dual o-rings)
- Others



## **Material and Seal Type**

- Temperature range meet operational and storage environments
- Compression set and O-Ring Shelf Life provide seal integrity for the entire storage and operational lifecycle
- Material compatibility explosive compatibility, environmental contaminants

(image credit:

- Various Seal Geometries
  - O-ring
  - Quad-ring
  - C-seals / U-cup
  - V-Packings



(image credit: http://www.rtdygert.com/ catalog/index.cfm/2/Rod %20Seals)



- V-Packing (image credit: http://acdepuydt.com/sp ecial\_seals/seal\_dimensi on\_info.htm)
- Other more 'exotic' solutions (Metal seals, Labyrinth Seals, Spring energized seals)

http://www.zdspb.com

/site/disclaimer.html)

# **Material & Design Considerations**





**Design and Control of The Sealing Surfaces Is Critical To Seal Effectiveness** 



### "Stiction" or Breakout Friction

- Force required to break o-ring seal, ie: during an arming event
- Different than O-ring running friction stiction is dependent on the length of time an O-ring remains in a sealed (at rest) state
- Especially problematic for munitions as they tend to sit for extended periods of time
- Stiction tends to increase to a maximum amount, dependent on material, packing gland configuration, seal type, and time at rest



ATK has conducted o-ring aging studies to characterize breakout friction over time

## **Methods To Overcome Stiction**

- Add lubrication
  - Internal or External



- Care must be taken to specify a surface finish that will allow sealing, reduce stiction, and be cost-effective
- Relax the extrusion gap
  - Extreme caution must be exercised in order to preserve the seal's integrity
- Utilize robust arming environments
  - Provide significant arming energy margin over worst-case stiction levels

## Stiction Can Be Minimized, But Ultimately Must Overcome It With A Robust Design





# Like an explosive train barrier, a pyrotechnic barrier is required to demonstrate reliable performance in blocking ignition transfer

## **Explosive train barrier elements are 'certified' effective via testing methods**

- Varicomp, Varidrive, Gap testing, Penalty testing, Margin testing
- Varicomp, Varidrive utilize calibrated donors or explosive outputs to predict a confidence level

## Relatively few methods are available to assess Pyrotechnic train barriers

- Penalty testing or Margin testing are most feasible, however little calibrated data exists to make Varicomp or Varidrive methods useful
- High sample size required to establish a confidence level

# A Recognized Pyrotechnic Ignition Train Reliability and Safety Effectiveness Protocol Is Needed In The Industry

# **Contact Information**



### **Mr. Brian Erickson**

Sr. Engineer, Mechanical Design ATK – Advanced Weapons Division Plymouth, Minnesota (763) 744-5377 brian.erickson@atk.com

### Mr. Mike Schrupp

Sr. Engineer, Mechanical Design ATK – Advanced Weapons Division Plymouth, Minnesota (763) 744-5451 <u>michael.schrupp@atk.com</u>

#### **Mr. Tom Larson**

Sr. Manager, Mechanical Design ATK – Advanced Weapons Division Plymouth, Minnesota (763) 744-5228 <u>thomas.larson@atk.com</u>

