O-Ring Safety Barriers for Rocket Motor Ignition Systems

Brian Erickson
ATK Advanced Weapons Division

46th Annual NDIA Guns & Missile Systems Conference & Exhibition
August 30, 2011
Miami, FL
• Discuss explosive train vs pyrotechnic ignition train safety barrier types and how they differ

• Discuss basic operation and design considerations for pyrotechnic barrier systems

• Discuss “Stiction” – a significant seal design consideration

• Conclude with demonstrating a need for a recognized protocol in establishing ignition train safety and reliability
A safety barrier is intended to interrupt ignition transfer between firing train elements as the primary safety feature in Safe and Arm (S&A) or initiation devices.

- Example, a “rotor” in a fuze S&A

Pyrotechnic Barrier versus Explosive Train Barrier

- Both prevent initiation of the next firing train element
- Explosive train barrier prevents detonation by blocking a shock wave output from a detonator from effectively reaching the next element in the detonation train
- Pyrotechnic barrier prevents ignition (deflagration, not detonation) by sealing hot gases and inhibiting a flame front from reaching the next element in the ignition train

Both types of barriers present design challenges

- Both are highly dependent on arming environments
- Pyrotechnic barrier needs a higher level of seal integrity
- ATK has extensive experience in developing both types of barriers
 - ATK is an industry leader in the development and production of fuzes and S&A devices for various types of munitions as well as in Rocket Motor Ignition Safety Devices (ISDs)

ATK Has Successfully Integrated Commercially Available O-rings as a Pyrotechnic Barrier in Rocket Motor Ignition Systems
Removal of the o-ring barrier during a valid weapon arming environment allows the firing train to function properly.

Robust environments must exist for removal of the barriers, examples

- Setback
- Pressure
- Spin

Pyrotechnic Barrier configurations:

- Piston inside a cylinder (single o-ring)
- Sleeve around a manifold (dual o-rings)
- Others
Material & Design Considerations

Material and Seal Type

- Temperature range – meet operational and storage environments

- Compression set and O-Ring Shelf Life – provide seal integrity for the entire storage and operational lifecycle

- Material compatibility – explosive compatibility, environmental contaminants

- Various Seal Geometries
 - O-ring
 - Quad-ring
 - C-seals / U-cup
 - V-Packings
 - Other more ‘exotic’ solutions (Metal seals, Labyrinth Seals, Spring energized seals)
O-Ring Seals

- Gland geometry
 - Gland fill percentage
 - Extrusion gap
 - Backing rings

- Surface finish of parts contacting the seal

- Surface finish of the seal itself
 - Can be specified via several different specifications

Design and Control of The Sealing Surfaces Is Critical To Seal Effectiveness
“Stiction” or Breakout Friction

- Force required to break o-ring seal, ie: during an arming event
- Different than O-ring running friction – stiction is dependent on the length of time an O-ring remains in a sealed (at rest) state
- Especially problematic for munitions as they tend to sit for extended periods of time
- Stiction tends to increase to a maximum amount, dependent on material, packing gland configuration, seal type, and time at rest

ATK has conducted o-ring aging studies to characterize breakout friction over time
Operational Considerations

Methods To Overcome Stiction

• Add lubrication
 – Internal or External

• Improve surface finish of parts in contact with seal
 – Care must be taken to specify a surface finish that will allow sealing, reduce stiction, and be cost-effective

• Relax the extrusion gap
 – Extreme caution must be exercised in order to preserve the seal’s integrity

• Utilize robust arming environments
 – Provide significant arming energy margin over worst-case stiction levels

Stiction Can Be Minimized, But Ultimately Must Overcome It With A Robust Design
Qualification Considerations

Like an explosive train barrier, a pyrotechnic barrier is required to demonstrate reliable performance in blocking ignition transfer

Explosive train barrier elements are ‘certified’ effective via testing methods

- Varicomp, Varidrive, Gap testing, Penalty testing, Margin testing
- Varicomp, Varidrive utilize calibrated donors or explosive outputs to predict a confidence level

Relatively few methods are available to assess Pyrotechnic train barriers

- Penalty testing or Margin testing are most feasible, however little calibrated data exists to make Varicomp or Varidrive methods useful
- High sample size required to establish a confidence level

A Recognized Pyrotechnic Ignition Train Reliability and Safety Effectiveness Protocol Is Needed In The Industry
Mr. Brian Erickson
Sr. Engineer, Mechanical Design
ATK – Advanced Weapons Division
Plymouth, Minnesota
(763) 744-5377
brian.erickson@atk.com

Mr. Mike Schrupp
Sr. Engineer, Mechanical Design
ATK – Advanced Weapons Division
Plymouth, Minnesota
(763) 744-5451
michael.schrupp@atk.com

Mr. Tom Larson
Sr. Manager, Mechanical Design
ATK – Advanced Weapons Division
Plymouth, Minnesota
(763) 744-5228
thomas.larson@atk.com