

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Manfredi Luciano 973-724-3473 manfredi.luciano@US.army.mil EAPS ARDEC APO

12 April 2011

Distribution A: Unlimited Distribution

Presentation Structure

A. Program Overview & Update

B. Flight Body Evolution of EAPS Interceptor

Program Goal and EAPS Battle Space

Target List

- Rockets: 107 mm-240 mmArtillery: 122 mm-152 mm
- Mortars: 60 mm 120 mm

- Goal is to Develop Technologies for 360 Degree Mobile Air Defense Against Rockets, Artillery and Mortars (RAM)
- ARDEC ATO Program Pursuing Gun Based Solution for Short Range Inner Tier – Need to fill range Gap of

present systems ribution A: Unlimited Distribution

EAPS Gun Baseline Concept

Phase II Program Goals and Objectives

- Demonstrate a prototype 50mm auto cannon that fires at 200 rds/min w/ a feed system for a ten round burst.
- Demonstrate a fire control sensor & commo station to simultaneously track burst of ten interceptors and two threats and command the ten interceptors to maneuver and warhead function.
- Demonstrate a 50mm cartridge to meet threshold performance.

Demonstrate integrated system (System Level TRL-6) by defeating two stationary threats in a simultaneous emulated scenario.

EAPS Gun ATO Integrated Demo Roadmap

Technology
Demonstration
Plan

Baseline Gun (112rds/min)
Baseline Projectile Design
New E-Scan Radar

Fixed Gun,
Stationary Targets
Demo

Indiv

Demo

Component

Performance Demonstration Plan Revisit Syst Study For Optimum Caliber High Rate Gun (200rds/min)
Optimized Projectile Design
New E-Scan Radar

Smaller Battery
MEMS S&A
Reduced Antennae
Smaller Electronics
More Lethal Warhead

EAPS Gun System HEMTT Mount

- C5, C17, C130 Transportable
- Meets Mobility Requirements
- More Cost Effective Than the Stryker Stryker Also An Option

Technovative Applications EAPS Fire Control System

512-element Transmit Antenna based on PPS with improved cooling

512-element Receive Antennas (3) based on PPS

1 meter interferometer baseline for high angular accuracy

PPS electronics group with upgraded processors

Fire control software adapted from PPS

Multi-target tracking and RF communications

FLIGHT DESIGN REFINEMENT TO REDUCE AEROBALLISTIC DRAG

Original Ogive Design

Flight Design, Nov 2007

Spike Nose Fix - Demo Round

Special Specia

Flight Design from Feb 2008 to Mar 2009, Demo

Velocity Comparison

Increased Stability at the Expense Of Drag

Computational Fluid Dynamics

Identified Spike & Boom Lengths & Fin Design As Variables for Drag Reduction

Test 405 Matrix

1.5 Caliber Spike

No T-Tab Fin

1.5 Caliber Shorter Boom, T-Tab Fin

1.5 Caliber Spike, No T-Tab Fin

Interceptor description	@ Mach 2.5	
	Prediction	Test 405
1.5 caliber spike nose	0.57	0.54
No T-Tab fin	0.61	0.63
_ 1.5 caliber spike + no T-Tab fin	0.54	0.50

RDECOM Drag Reduction Summary

	Velocity @ 1000 m	Difference in velocity from test 303	
	[m/s]	[m/s]	
Test 303	567	-	
1.5 caliber spike	634	+67	
No T-Tab fin	585	+18	
1.5 caliber spike	658	+91	
+ no T-Tab fin	038		

Summary

Fire Control Sensor Contractor Allows Program to Move Toward Integration Phase

Demonstration in FY14.

Interceptor Optimization (still ongoing) Will Meet Performance Requirements

Lethality Assessment tests to optimize warhead design.

System study to select optimum caliber.

Flight design and refinement to reduce aeroballistic drag.

