GN&C System Simulation Development Options

Legacy Software Simulation

PRODAS GN&C Prototype Tool

MATLAB/ Simulink Simulation
Legacy Software Simulation

• **Pros**
 - Detail only limited by developer
 - Very fast simulation

• **Cons**
 - Tough to validate
 - Can get very complex

PRODAS GN&C Prototype Tool

• **Pros**
 - Trajectory Engine transparent to User
 - Very fast simulation
 - Simulation Data provided by PRODAS
 - Can be driven by a Macro
 - Validated Trajectory codes

• **Cons**
 - Limited detail

MATLAB/ Simulink Simulation

• **Pros**
 - Almost unlimited details can be included
 - Internal equations and variables visible
 - GN&C can transition easily into Hardware

• **Cons**
 - User must build and validate Trajectory Engine
 - User must provide inputs and build outputs
The New Combined Option

- **Pros**
 - Validated Trajectory Engine
 - Simulation inputs provided by PRODAS
 - Unlimited details can be included
 - GN&C can transition easily into Hardware
PRODAS – MATLAB/Simulink Simulation

PRODAS Environment

Modeling
- Projectile Modeler
- Aero Prediction
- Mass Properties
- Rocket Motor
- Initial Conditions
- Error Budgets
- MET

Visualization
- 3D Animations
- Extensive Plotting

MATLAB/Simulink Environment

Development
- Leverage All MATLAB/Simulink Toolboxes and Blocksets
- Focused Effort on GNC Design

Simulation
- Validated 6+DOF Trajectory Engine
- Seamless Data Interface and Execution Between PRODAS and MATLAB

Product Tests

Hardware-In-the-Loop (HIL)
- Use the same simulation to drive the HIL fixture

Embedded Code Generation
- Automatically generate flight code from the Simulink model

Fire Control
- Simulation software is the basis of fire control software
Industry standard projectile design and analysis environment

65+ integrated analysis modules
 - System simulation
 - Aerodynamic prediction and stability
 - Trajectory simulation and flight Dynamics
 - Guidance, navigation, and control
 - In-bore balloting and interior ballistics simulation
 - Aero-ballistic test data reduction
 - Software development kit

Over 500 Users at Government and prime contractors

In use in over 25 countries
Guided Projectile Development with PRODAS

Build a Model

Simple Symmetric Model Editor

Projectile Tracing Tool

Estimate Aerodynamics

Arrow Tech Finner/Spinner

NSWC AP

Test Data

Nielsen Engr. MSL3

Missile DATCOM

PRODAS Aero Manager

Fly It

Standard 6DOF

GN&C Prototype Tool

GN&C MATLAB

3D visualization
How Does It Work?

- Illustrate with a simple transformation
- Add nose and tail kit to a 60mm Mortar
Design the Air Vehicle

Model Editor

- Design the air vehicle:
 - Add control surfaces
 - Update mass properties
 - Estimate Aerodynamics
 - Evaluate Stability
 - Repeat as Necessary

Stability Evaluation

Mass Properties

Aero Prediction

PRODAS
Build a Simple Open Loop Controller

- Open Loop Controller to:
 - Deploy canards at apogee
 - Extend Range
 - Dither with roll angle

PRODAS MATLAB Interface

MATLAB/Simulink
Simple Open Loop Controller

- Validated trajectory engine
- Automatic interface to aeros and IC’s
- Design the GNC in Simulink
 - Use any Block Set
 - Inputs - Body states
 - Output - canard angle
- Model contained in PR3 file
Run Simulation Review Results

- Use MATLAB plot functions or
- Use built in PRODAS plots and visualizations
- Cross plot against other codes
Setup trade study scenarios varying:
- Body states
- Mass properties
- Aerodynamics
- Rocket Motor
- Environment (MET)
- 50 custom GNC parameters

Add system errors to any variable
- Mission-to-mission
- Weapon-to-weapon
- Round-to-round
System Error Budget

• Example entered errors for:
 • Muzzle Velocity
 • Mass
 • Winds
 • Temperature
 • Quadrant Elevation
• Monte Carlo Runs
 • Ballistic to validate errors
 • Open loop guidance to check control authority

PRODAS
Where To Go From Here

- Close Loop GNC
- Sensor Models
- Use 6DOF and GNC model for HIL
- Generate code for embedded processor

This then becomes the system simulation for the program
Conclusion

• The PRODAS tool set has been enhanced with the inclusion of the MATLAB/Simlink Trajectory Code

• Now PRODAS can be your tool from concept to final production.

• For more information on the PRODAS MATLAB/Simulink Trajectory Engine contact:
 – Dr. Mike Wilson
 (802) 865-3460 ext.14
 mike@prodas.com
 – Mark Steinhoff
 (802) 865-3460 ext.18
 mark@prodas.com