2011 NDIA

Gun \& Missile Systems Conference Aug. 29 - Sept. 1, 2011

$30 \times 173 \mathrm{~mm}$ TPDS-T Development

Don Gloude
Chief Design Engineer
ATK Integrated Weapon Systems
763-744-5253
Don.Gloude@ATK.com

Contents

- Project Objectives/Summary
- Cartridge Concept
- Cartridge Development
- Testing Summary
- Go Forward Plans

30mm TPDS-T Project

Project Objective: Develop a $30 \times 173 \mathrm{~mm}$ TPDS-T training cartridge (MK317) that provides a ballistic match to the $30 \times 173 \mathrm{~mm}$ MK258 and MK268 APFSDS-T tactical cartridges. Deliver 1200 rounds to the USMC for qualification testing.

Project Summary:

- Evaluate projectile designs for function, ballistic match and producibility
- Evaluate tracer designs for retention, visibility and burn time
- Testing to refine and verify design
- Manufacture and deliver 1200 rounds to the USMC for MK317 qualification testing
- Muzzle Velocity
- Chamber Pressure
- Action Time
- Trace
- Dispersion
- Max Range

$$
\begin{aligned}
& 1615 \quad 15 \mathrm{~m} / \mathrm{s} \quad(+21 \mathrm{C}) \\
& \mathrm{SD} \leq 12 \mathrm{mps} \quad(-54 \mathrm{C} /+71 \mathrm{C})
\end{aligned}
$$

$$
\text { X-bar }=61.4 \mathrm{kpsi} \quad(+21 \mathrm{C})
$$

$$
\text { X-bar }+3 \text { SD }=66.6 \mathrm{kpsi} \quad(-54 \mathrm{C} /+71 \mathrm{C})
$$

$5.3 \mathrm{msec}(+21 \mathrm{C} /+71 \mathrm{C})$
$7.7 \mathrm{msec}(-54 \mathrm{C})$
8 msec max individual
$3.5 \mathrm{sec} \min$ (all temps)
Visible against light background
0.40×0.40 milliradian (+21C @1000 inches)
8000 meters

- Ballistic match to MK258/MK268 from 1500 to 2000 meter range
- Existing qualified ignition train

30mm TPDS-T Cartridge Concept

M910E1 Steel Sub-Projectile with Tracer

4-Petal Molded Sabot

- M910E1 steel sub-projectile with aluminum nose and tracer
- Solid aluminum pusher
- 4-petal (slot) molded sabot (20\% glass filled nylon 6/6)
- Different rotating band diameters and tapers were evaluated

Baseline Pusher

Alternate Projectile Concepts Considered

Scalloped 3-Petal Sabot

Segmented Pusher

- Stress analysis of scalloped 3-petal sabot design said that it would survive in-bore loads and discard but lower risk 4-petal design was incorporated.
- Segmented pusher yielded higher dispersion than solid pusher. This concept may be pursued in follow-on design optimization work.

Aeroballistic Design Analysis

Preliminary PRODAS model of cartridge as analyzed by Arrow Tech

	Mass, gm.	Transverse Inertia, $\mathrm{gm}-\mathrm{cm}^{2}$	Axial Inertia, $\mathrm{gm}-\mathrm{cm}^{2}$	CG from Nose, cm.	Diameter, cm.
Projectile	123.5	497.5	93.6	6.06	
Sub-projectile w/tracer	66.3	170.3	21.5	5.24	1.62
Sub-projectile after burnout	62	157.4	21	5.16	

Table 1. Physical Properties of M910E1 (TPDS-T) Variant

1600 m/s Velocity Required for Ballistic Match

Vertical Mismatch 30 mm TPDS-T at $1600 \mathrm{~m} / \mathrm{s}$ vs MK258 and MK268 APFSDS-T USMC EFV

AFP-001 Propellant Could Not Achieve Velocity

- Initial interior ballistic modeling of AFP-001 indicated that design goal of $1600 \mathrm{~m} / \mathrm{sec}$ should be achievable.

Code Used	Projectile Weight Grams	Chamber Pressure Kpsi	Predicted Muzzle Velocity, \mathbf{m} / \mathbf{s}
PRODAS, Baer- Frankle model	128	60.9	1570
CONPRESS	122	58	1600

- Charge establishment testing was only able to achieve a max velocity of $1154 \mathrm{~m} / \mathrm{sec}$ at 19.6 Kpsi case mouth pressure
- AFP-001 burn rate was too slow to develop adequate pressure with a 122 - 126 gram projectile.

Refined Model for Best Match to 2000 Meters

$1620 \mathrm{~m} / \mathrm{sec}$ muzzle velocity provided the best overall ballistic match to 2000 meters.

- A higher order interior ballistics analysis was conducted on alternate propellants using IBHVG-2.
- Radford RP-910, with tailoring of grain geometries, was recommended as a viable solution based upon the modeling.

Charge Weight	Velocity	Pressure
125 grams	$1527 \mathrm{~m} / \mathrm{s}$	59.8 Kpsi
140 grams	$1590 \mathrm{~m} / \mathrm{s}$	61.5 Kpsi
150 grams	$1624 \mathrm{~m} / \mathrm{s}$	61.5 Kpsi

- Initial results still had lower velocity than model but pressures were also lower.
- Final charge establishment test results met the velocity design requirements with margin.

Group No.	Charge Weight, grams	Quantity	Muzzle Velocity, m/s	Pressure,	Action	Dispersion	Tispersion horizontal,
vertical,							
msec	mils	mils					
1	145	10	1571	41.2	3.44	0.33	0.27
2	151	10	1619	45.4	3.18	0.18	0.19
3	157	8	1670	50.3	3.04	0.33	0.31

LAT Results for First Deliverables

Temp	Velocity	SD	Pressure	SD	DISP X	DISP Y	Trace Time	SD
21 C	$1630 \mathrm{~m} / \mathrm{s}$	6.4	46.6 Kpsi	0.7	0.42	0.55	-	-
-25 F	-	-	-	-	-	-	7.11 sec	0.59
-65 F	-	-	-	-	-	-	7.33 sec	0.58

LAT results for the first sub-lot met most of the design requirements.

- Velocity above target
- Pressure has significant margin
- Trace times were very good at extreme temperatures
- Dispersion slightly exceeded design requirements
- Autogun F\&C had no metal parts security issues
- Cartridge Weight (422 grams)
- Projectile (123 grams)
- Aluminum pusher
- Steel sub-projectile core w/tracer
- Aluminum press-fit nose
- Plastic molded sabot
- Ignition system
- M36A2 primer
- Flashtube assembly (IB52 pellets)
- RP-910 propellant (151 grams)
- Aluminum cartridge case

Go Forward Plans

ATK stands ready with our remaining 30mm TPDS-T hardware to support the USMC qualification effort whenever it resumes.

Contacts

- Robert Schmitz (ATK Market Segment Director)
- (763) 744-5724
- Bob.Schmitz@ATK.com
- Will Wennberg (ATK Medium Caliber Ammunition Business Development)
- (480) 324-8612
- William.Wennberg@ATK.com
- Larry Douma(ATK Ammunition Engineering Manager)
- (763) 744-5252
- Larry.Douma@ATK.com
- Don Gloude (ATK Chief Design Engineer)
- (763) 744-5253
- Don.Gloude@ATK.com

