

2011 NDIA Gun & Missile Systems Conference Aug. 29 – Sept. 1, 2011

30 x 173mm TPDS-T Development

Don Gloude Chief Design Engineer ATK Integrated Weapon Systems 763-744-5253 Don.Gloude@ATK.com

Approved for Public Release 11-S-1846 dated 7 April 2011

- Project Objectives/Summary
- Cartridge Concept
- Cartridge Development
- Testing Summary
- Go Forward Plans

Project Objective: Develop a 30 x 173mm TPDS-T training cartridge (MK317) that provides a ballistic match to the 30 x 173mm MK258 and MK268 APFSDS-T tactical cartridges. Deliver 1200 rounds to the USMC for qualification testing.

Project Summary:

- Evaluate projectile designs for function, ballistic match and producibility
- Evaluate tracer designs for retention, visibility and burn time
- Testing to refine and verify design
- Manufacture and deliver 1200 rounds to the USMC for MK317 qualification testing

•	Muzzle Velocity	1615
•	Chamber Pressure	X-bar = 61.4 kpsi (+21C) X-bar + 3SD = 66.6 kpsi (-54C/+71C)
•	Action Time	5.3 msec (+21C/+71C) 7.7 msec (-54C) 8 msec max individual
•	Trace	3.5 sec min (all temps) Visible against light background
•	Dispersion	0.40 x 0.40 milliradian (+21C @1000 inches)
•	Max Range	8000 meters

- Ballistic match to MK258/MK268 from 1500 to 2000 meter range
- Existing qualified ignition train

30mm TPDS-T Cartridge Concept

- M910E1 (25mm) projectile scaled to 30mm
 - Aluminum pusher
 - Steel sub-projectile core w/tracer
 - Aluminum press-fit nose
 - Plastic molded sabot
- Existing qualified 30x173 ignition system
 - M36A2 primer
 - Flashtube assembly (IB52 pellets)
 - AFP-001 propellant
 - Aluminum cartridge case

30mm TPDS-T Projectile Baseline Concept

M910E1 Steel Sub-Projectile with Tracer

4-Petal Molded Sabot

- M910E1 steel sub-projectile with aluminum nose and tracer
- · Solid aluminum pusher
- 4-petal (slot) molded sabot (20% glass filled nylon 6/6)
 - Different rotating band diameters and tapers were evaluated

Baseline Pusher

Alternate Projectile Concepts Considered

Scalloped 3-Petal Sabot

Segmented Pusher

- Stress analysis of scalloped 3-petal sabot design said that it would survive in-bore loads and discard but lower risk 4-petal design was incorporated.
- Segmented pusher yielded higher dispersion than solid pusher. This concept may be pursued in follow-on design optimization work.

Preliminary PRODAS model of cartridge as analyzed by Arrow Tech

	Mass, gm.	Transverse Inertia, gm-cm ²	Axial Inertia, gm-cm²	CG from Nose, cm.	Diameter, cm.
Projectile	123.5	497.5	93.6	6.06	
Sub-projectile w/tracer	66.3	170.3	21.5	5.24	1.62
Sub-projectile after burnout	62	157.4	21	5.16	

Table 1. Physical Properties of M910E1 (TPDS-T) Variant

Vertical Mismatch 30mm TPDS-T at 1600 m/s vs MK258 and MK268 APFSDS-T USMC EFV

Range (m)

• Initial interior ballistic modeling of AFP-001 indicated that design goal of 1600 m/sec should be achievable.

Code Used	Projectile Weight Grams	Chamber Pressure Kpsi	Predicted Muzzle Velocity, m/s	
PRODAS, Baer- Frankle model	128	60.9	1570	
CONPRESS	122	58	1600	

- Charge establishment testing was only able to achieve a max velocity of 1154 m/sec at 19.6 Kpsi case mouth pressure
- AFP-001 burn rate was too slow to develop adequate pressure with a 122 126 gram projectile.

1620 m/sec muzzle velocity provided the best overall ballistic match to 2000 meters.

• Radford RP-910, with tailoring of grain geometries, was recommended as a viable solution based upon the modeling.

Charge Weight	Velocity	Pressure		
125 grams	1527 m/s	59.8 Kpsi		
140 grams	1590 m/s	61.5 Kpsi		
150 grams	1624 m/s	61.5 Kpsi		

- Initial results still had lower velocity than model but pressures were also lower.
- Final charge establishment test results met the velocity design requirements with margin.

Group	Charge	Quantity	Muzzle	Pressure,	Action	Dispersion	Dispersion
No.	Weight,		Velocity,	Kpsi	Time,	horizontal,	vertical,
	grams		m/s		msec	mils	mils
1	145	10	1571	41.2	3.44	0.33	0.27
2	151	10	1619	45.4	3.18	0.18	0.19
3	157	8	1670	50.3	3.04	0.33	0.31

Temp	Velocity	SD	Pressure	SD	DISP X	DISP Y	Trace Time	SD
21C	1630 m/s	6.4	46.6 Kpsi	0.7	0.42	0.55	-	-
-25F	-	-	-	-	-	-	7.11 sec	0.59
-65F	-	-	-	-	-	-	7.33 sec	0.58

LAT results for the first sub-lot met most of the design requirements.

- Velocity above target
- Pressure has significant margin
- Trace times were very good at extreme temperatures
- Dispersion slightly exceeded design requirements
- Autogun F&C had no metal parts security issues

Final 30mm TPDS-T Cartridge Design

- Cartridge Weight (422 grams)
- Projectile (123 grams)
 - Aluminum pusher
 - Steel sub-projectile core w/tracer
 - Aluminum press-fit nose
 - Plastic molded sabot
- Ignition system
 - M36A2 primer
 - Flashtube assembly (IB52 pellets)
 - RP-910 propellant (151 grams)
 - Aluminum cartridge case

ATK stands ready with our remaining 30mm TPDS-T hardware to support the USMC qualification effort whenever it resumes.

Contacts

- Robert Schmitz (ATK Market Segment Director)
 - (763) 744-5724
 - Bob.Schmitz@ATK.com
- Will Wennberg (ATK Medium Caliber Ammunition Business Development)
 - (480) 324-8612
 - William.Wennberg@ATK.com
- Larry Douma(ATK Ammunition Engineering Manager)
 - (763) 744-5252
 - Larry.Douma@ATK.com
- Don Gloude (ATK Chief Design Engineer)
 - (763) 744-5253
 - <u>Don.Gloude@ATK.com</u>