

30mm x 113mm (LW30) Target Practice Tracer (TP-T) Ammunition

Kyle Nerison Mechanical Design Engineer ATK Integrated Weapon Systems 763-744-5519 Kyle.Nerison@ATK.com 14 April 2011

Approved for Public Release 11-S-1841 dated 7 April 2011

Outline

- Applications
- Performance Objectives
- Initial Development Phase
- Final Development Phase
- Summary

Applications

M230 Gun

3

Currently on Apache helicopter

M230LF (Link Fed) Gun

- Based on proven M230 gun
- Low-recoil design makes gun adaptable to many systems
- Being implemented for ground applications

ATK System Application Examples for M230LF

- Modular Advanced Weapon System (MAWS)
- Palletized Autonomous Weapon System (PAWS)
- Nobles Engineering Viper Gun System

Ground & shipboard applications require traced ammo

M230LF PAWS

Flight Characteristics

Desire direct drop-in addition to current LW30 ammo family

Tracer

- Trace distance to 2000 meters
- Daylight & infrared visible

ATK

ATK

ATK >

ANSYS Finite Element Analysis at Setback / Max Base Pressure at 71°C (390 MPa)

• Option 1: Localized projectile body deformation – Fracture not anticipated

Option 2: No projectile body deformation – Robust

Option 3: Localized nose and projectile body deformation – Fracture not anticipated

9

Initial FEA Analysis – Tracer

ANSYS FEA for tracer consolidation in Opt 1

Outcome: Tracer boom will support consolidation

ANSYS FEA for pressure leak for Opt 2 and 3

- Outcome: Tracer will fail mechanically if gun pressure leakage occurs (red arrows)
 - Led to development of more robust assembly process to prevent leakage

LW30 TPT-T Option #02 - xy Shear Stress in Tracer Pellets

264.75 353

PRODAS ballistics analysis of match to M789 out to 2000 meters

Outcome: Option 1, 2, & 3 ballistic match (drop) is within objective requirements

PRODAS ballistics analysis

Projectile	Gyro Stab Factor (2-3)	Muzzle Jump Factor	Predicted Yaw (deg)
M789	2.94	.025	3.5
M788	2.86	.028	3.5
Option 1	2.28	.023	2.5
Option 2	2.75	.021	4.5
Option 3	1.93	.026	4.5

• Outcomes: Stability, dispersion, and yaw all predicted to be acceptable

Initial Fabrication & Assembly

Option 1

Option 2

Option 2 & 3 Tracer Assembly

Option 3 Approved for Public Release 11-S-1841 dated 7 April 2011

- Radar and drag profile data collected and analyzed
 - Outcome: 'Tracer effect' less significant than estimated, resulting in slightly higher drag and longer flight times to 2000 meters than predicted
- PRODAS model updated based on empirical data
 - Outcome: Ballistic match and required muzzle velocity predictions updated

Projectile	Original QE Match (Drop in mils) @ Req'd Muzzle Velocity	Updated QE Match (Drop in mils) @ Req'd Muzzle Velocity	
M788	0.69 @ 805 m/s	same	
Option 1	0.30 @ 783 m/s	0.47 @ 817 m/s	
Option 2	0.29 @ 801 m/s	0.28 @ 850 m/s	
Option 3	0.14 @ 816 m/s	0.79 @ 856 m/s	

Initial Test Results – Tracer – Option 1

- Ambient: 18/20 successful
 - Both failures ignited but were short burns (failures averaged 9 meters short)
- Cold: 20/20 successful
- Hot: 11/20 successful

- All failures ignited but were short burns (failures averaged 152 meters short)
- High burn time variation

2km Flight	Ambient	Cold	Hot
Time (sec)≈	6.41	6.60	6.15

Initial Test Results – Tracer – Option 2

- Ambient: 17/20 successful
 - All failures ignited but were short burns (failures averaged 10 meters short)
- Cold: 15/20 successful
 - 4 failures ignited but were short burns (failures averaged 15 meters short)
 - 1 failure did not ignite
- Hot: 19/21 successful
 - 1 failure ignited but was a short burn (42 meters short)
 - 1 failure did not ignite
- All had consistent burn time variation

2km Flight	Ambient	Cold	Hot
Time (sec)≈	6.12	6.50	6.04

Initial Test Results – Tracer – Option 3

- Ambient: 7/20 successful
 - All failures ignited but were short burns (failures averaged 33 meters short)
- Cold: 4/20 successful
 - 14 failures ignited but were short burns (failures averaged 41 meters short)
 - 2 failures did not ignite
- Hot: 2/21 successful
 - All failures ignited but were short burns (failures averaged 62 meters short)
- All had consistent burn time variation

2km Flight	Ambient	Cold	Hot
Time (sec)≈	6.55	6.83	6.43

ATK

Structural Integrity

- All designs survived gun launch at all temperatures
- Risk areas identified during FEA

Aeroballistic Performance

• All designs met threshold ballistic match objectives

Tracer Performance

All designs must have longer tracer burn times to reliably meet objective trace distance
of 2000 meters

Producibility

• Many improvement opportunities identified

An updated design was required to meet performance objectives

Threshold (Primary) Requirements:

- Continue to meet ballistic match and dispersion objectives
- Reliably meet tracer burn distance requirements
- Added requirement for **compatibility in alternate barrel design**
 - 42" with 6.5° rifling exit angle (most common barrel for M230 on Apache)
 - This is design used for all previous PRODAS simulations
 - 60" barrel with 6.2° rifling exit angles (most common barrel for M230LF)

Objective (Secondary) Requirements:

- Method to improve tracer ignition reliability
- Improve producibility & affordability

ATK)

ANSYS Analysis Input Summary

- Body & Nose Materials:
 - Minimum allowable material properties
- Base Pressure:

20

- 350 MPa pressure (greater than predicted pressure at hot) applied to aft exterior

Final FEA Analysis (cont'd) – Robust Design

ANSYS Analysis

21

Outcome: Localized projectile body deformation
– Fracture not anticipated

ANSYS FEA for tracer consolidation

Outcome: Projectile body will support tracer consolidation

PRODAS ballistics analysis of match to M789 out to 2000 meters

• Simulations completed for both 42" and 60" barrel designs, and updated to account for radial match (a function of both drop and drift)

	42" Barrel, 6.5º Exit Angle	60" Barrel, 6.2º Exit Angle	
Projectile	QE Match (Radial in mils) @ Req'd Muzzle Velocity	QE Match (Radial in mils) @ Req'd Muzzle Velocity	
M788	0.10 @ 800 m/s	0.16 @ 839 m/s	
Final	0.64 @ 769 m/s	0.60 @ 804 m/s	

Outcome: Final design within objective requirements

PRODAS ballistics analysis

	42" Barrel, 6.5º Twist	60" Barrel, 6.2º Twist	Either Barrel	
Projectile	Gyro Stab Factor (2-3)	Gyro Stab Factor (2-3)	Muzzle Jump Factor	Predicted Yaw (deg)
M789	2.94	2.74	.025	3.5
M788	2.86	2.66	.028	3.5
Option 1	2.28	-	.023	2.5
Option 2	2.75	-	.021	4.5
Option 3	1.93	-	.026	4.5
Final	3.01	2.74	.012	4.0

• Outcomes: Stability, dispersion, and yaw all predicted to be acceptable

Completed:

- Nose caps
- Projectile Bodies (Figure 1), through banding (Figure 2), band trim, and plate/paint
- Tracer & igniter pellets
- Metering Discs

On-Going:

25

• Final Assembly to be completed in near future

ATK

- Charge Establishment
- Charge Verification
- PVAT, Dispersion, Yaw, Mann Barrel Function & Casualty
- Max Range Tracer & Radar
- Autogun Function & Casualty
- Environmental then PVAT

26

Testing to be conducted in near future

Summary

Initial 3 Designs

- Met ballistic match and flight objectives
- Could not reliably meet tracer objectives
- Had producibility and assembly concerns

Final Design

- Simulations indicate this will meet ballistic and flight requirements
- Additional tracer mix capacity and metering ring expected to provide reliable tracing to 2km
- Structurally robust design
- Improved producibility and cost savings

Questions?

?

Clay Bringhurst (ATK Medium Caliber Ammunition Business Development)

- (480) 324-8649
- <u>Clay.Bringhurst@ATK.com</u>

Tim Graves (ATK LW30 Program Manager)

- (480) 324-8767
- <u>Tim.Graves@ATK.com</u>

Kyle Nerison (ATK LW30 Design Engineer)

- (763) 744-5519
- Kyle.Nerison@ATK.com

