

SPECIAL MISSIONS

Small Arms Air Platform Integration

Rapid Integration of the M197 onto the **MH-60S**

Abstract 11584

31 August 2011

Joseph Burkart Crane Division, Naval Surface Warfare Center (NSWC Crane)

> Com (812) 854-1654 **DSN 482-1654** joseph.burkart@navy.mil

NSWC Crane Division

14 NAVSEA Technical Capabilities

Strategic Missions Electronic Warfare / Information Operations

Four Outputs:

- Knowledge
- Contracts
- Hardware
- Software

Small Arms Air Platform Integration

- Who are we?
 - We are a team of engineers, logisticians, and technicians with vast crew served weapons and electronics integration experience.
 - We have the capability to support the full life cycle of the systems we deploy.
 - We support multiple platform offices and team with industry partners.
 - We take great pride in providing high quality support to our customers in a timely manner.

- What do we do?
 - **Design and integrate weapon** systems for various aircraft.
 - Fabricate prototype parts for fit checks and testing.
 - **Support flight certification process** through the NAVAIR Performance Monitors.
 - **Provide Finite Element Analysis** (FEA) modeling for fatigue and crash loads.
 - **Procure production hardware** through GOV contracts.
 - Receive, inspect, kit, and deploy high quality systems.
 - **Provide interim supply support.**

Various Air Platforms Supported

Rapid System Integration

- How can we rapidly integrate weapon systems at a reduced cost that will provide enhanced capability for the fleet?
- How are we using Systems Engineering to solve this?

Systems Engineering Plan

- We used applicable **Systems Engineering** Guides to derive a tailored **Systems Engineering Plan**
- Used NAVAIR Systems **Engineering Technical** Reviews (SETR) Guide to establish Checklists and **Entrance/Exit Criteria**

Naval Air Systems Command NAVMAIR

Systems Engineering Guide

SYSTEMS

ENGINEERING

January 2001

SUPPLEMENTARY TEXT

NAV MAIR NAVSEA

Marines Marines

Naval Systems Engineering Guide

October 2004

Systems Engineering Guide for Systems of Systems

> Systems Engineering Plan **Preparation Guide**

Version 1.0 Amoust 2008

ctor, Systems and Software Engine Secretary of Defense (Acquisition a fice of the Under Secretary of Defen Acquisition, Technology and Logistic

"Technical Planning for Mission Success"

Version 2.01

Department of Defense

Office of the Deputy Under Secretary of Defense for Acquisition and Technology

> Systems and Software Engineering Enterprise Development

FUNDAMENTALS Preliminary Design Review PREPARED BY THE
DEFENSE ACQUISITION UNIVERSITY PRESS
FORT BELVOIR, VIRGINIA 22060-5565

Tailor vs. Cut

- The use of 'Tailor' instead of 'Cut' was key to our systems engineering process
 - Tailor: to fit to a particular circumstance
 - Cut: reduction; break off
 - **Key Questions:**
 - How can we apply guides and instructions written for an **ACAT I program to a small rapid development effort?**
 - What is the purpose of the process/document?
 - Does the purpose add value to the program?
 - How can we benefit from the purpose within cost and schedule?
- Readdressed how we 'Tailor' the Guides and Instructions to ensure we're meeting the intent of the document
- Putting 'Pen to Paper' forces tough decisions to be made early and greatly aid in the planning process and gets everyone on the same page

Work Breakdown Structure

- **Scoped the Project and Defined Artifacts**
- The WBS was created to capture the total effort to support the development, integration and fielding of the 20mm Gun System.
- Based on MIL-HDBK-881A
- Contains a WBS Dictionary for each element.
- **Established Common Terms.**
- Assigned each WBS Element to a Functional Lead

Team Structure

- Established a Team that could execute the work
- **Involved Non-Design Functional Areas from** the start of the project

Areas of Responsibility

Project Lead

- Stakeholder Mgt
- Decision Analysis
- Technical Assessment
- Configuration Mgt
- Data Mgt
- Contract Mqt
- Risk Mat
- Validation

Systems Engineer

- Technical Planning
- •Requirements Mgt
- •Requirements Analysis
- Architecture Design
- Implementation
- Interface Mgt
- Verification

Logistics Lead

- Logistics Documents
- Training

Electrical Lead

- •Electrical Design
- Electrical Component **Fabrication**

Test Lead

- Test Planning
- Component Testing
- Subsystem Testing
- System Functional Checkout
- Test Execution
- Test Coordination

System Safety Lead

- •WSESRB Data Package
- •LSRB Data Package
- System Safety Planning

Mechanical Lead

- Mechanical Design
- Hardware Fabrication

Death by Meetings?

- Enforce Time Limits
- Working Meetings
- Follow an Agenda
- Stay Focused
- Low Preparation Workload
 - Most Preparation is Day-to-Day Tasking
- Follow Up
- Clear Expectations

- IPT Meeting
 - Weekly
- Sponsor Meeting
 - Weekly
- Integration WIPT Lead Meeting
 - Daily
- Integration WIPT Meeting
 - Weekly
- Functional Lead Meeting
 - Weekly

Project Documentation

- **Systems Engineering Plan**
- **Product Performance Specification**
- System/Subsystem **Specification**
- System/Subsystem Design **Description**
- **Interface Control Document**
- **Initial Functional Analysis**
- **Test and Evaluation Strategy**
- **Test and Evaluation Program** Plan
- **System Requirements Verification Matrix**

- **Team Work Plan**
- **Configuration Management** Plan
- **Risk Management Plan**
- **Work Breakdown Structure**
- **System Safety Program Plan**
- System/Subsystem Hazard **Analysis**
- **Interim Support Plan**
- **User's Logistics Support** Summary
- **Acquisition Logistics Support Plan**

Document Traceability

Design Environment

- **Don't Micro-Manage**
 - Allowed the Leads to Lead
 - **Helped Leads Identify Risks and Solutions**
 - Didn't 'Trump' Functional Lead Decisions
 - 'Maybe sometimes'
 - Allowed Creativity
 - "My" Design would have looked vastly different
 - Is the system meeting requirements?
- Paperwork increased up the chain

The Line of Integration

- At what point do we draw the line for integration
 - COTS System onto Platform?
 - COTS Subsystems into a System onto Platform?
 - COTS Components into Subsystems into Systems onto Platforms?
 - The higher the better, within Performance, Schedule and Cost
- Use of Analysis of Alternatives and Trade Studies to identifying level of integration
 - Risk vs. Benefit Chart
 - This places the priority on the performance of the end item
 - **Cost and Lead Time**
 - Often COTS lead times are longer than entire project schedule

Key Documents

- **System Subsystem Specification**
 - **Allocated Requirements to WBS Elements**
 - Assigned to Functional Leads
- **Interface Control Document**
 - Defined External and Internal Functional, Physical, Human Interfaces
 - Established Interface Nomenclature
 - Assigned to Functional Leads
- **System Subsystem Design Description**
 - **Established System Architecture**
 - **Documented System Wide Design Decisions**
 - **Quality Factors Allocation**
 - **Fire Controls Design Decisions**
 - **Power Subsystem Design Decisions**
 - **Weapons Ammunition Handling System Design Decisions**
 - Aircraft Gun Mounting Adapter Design Decisions
 - **Consolidated Trade Studies and Analyses to one Location**
 - Alternative System Design Analysis
 - **Gun Drive Motor Alternative Design Trade Study**
 - **Booster Motor Assembly Alternative Design Trade Study**
 - M197 Assembly Alternative Design Trade Study
 - Firing Rate Selection and Vibration Analysis
 - **System Faults Analysis**
 - Hardware vs. Firmware Justification White Paper
 - **Booster Motor Requirement Analysis**
 - **Dispersion/Boresight Analysis**

System Architecture

OR MULLIMETER AUTOMATIC CUIN HELICORTER ARMAMENT CUROVOTEM		
20 MILLIMETER AUTOMATIC GUN HELICOPTER ARMAMENT SUBSYSTEM A/A49E-27		
FIRE CONTROL SUBSYSTEM 1A3		WEAPONS AMMUNITION HANDLING SYSTEM 1A2
Weapon Trigger (CI) 1A3A2		Booster Motor
		Ammo Can (CI)1A2A2 Assembly (CI) 1A2A5 Assembly (CI)
A-Kit		(Paint)
Gun Control Panel (CI) 1A3A1		
		,
		Feed Chute Assembly (CI)
		1A2A4
Blank-Off Plate 1A3A3		
		Ammo Can Floor Adapter Plate (CI)1A2A3
A-Kit		
POWER SUPPLY SUBASSEMBLY		AIRCRAFT GUN MOUNTING ADAPTER 1A1
Power Subsystem (CI) 1A4A1		Gun Control Unit (CI) Gun Mount (CI) 1A1A1
		1A1A2
Wire Harness Subassembly (CI) 1A4A2		Gun Mount Wire
1A4A2-W1		Harnesses (CI) 1A1A6
	1A4A2-W2	1A1A6-W7
1A4A2-W6		1A1A6-W5
1A4A2A1 1A4A2A2	1A4A2-W3	M197 Assembly (CI) 1A1A4
		Gun Drive Assembly (CI)
		1A1A3
1A4A2-W8	1A4A2-W4	IZLID 1000P-W
		(CI) 1A1A5
A-Kit	B-Kit	

NSWC Crane as the System Integrator

RAPID RESPONSE

- As a DoD Activity funding can be provided immediately avoiding contract lead times
- This allows us to be fully engaged from the start of the program, working with the sponsor and end user to solidify requirements
- No contract mods when requirements change
- Flexibility to adjust to SE process changes
 - **Drop non-value added tasks**
 - Add emerging tasks to meet goals

Small Arms Air Platform Integration

Thank you for your time and attention!

For more information on NSWC Crane, please visit www.crane.navy.mil

Images were downloaded via publically accessible websites