Rapid Integration of the M197 onto the MH-60S
– Abstract 11584

31 August 2011

Joseph Burkart
Crane Division, Naval Surface Warfare Center (NSWC Crane)
Com (812) 854-1654
DSN 482-1654
joseph.burkart@navy.mil
NSWC Crane Division

Stewards of 14 NAVSEA Technical Capabilities

NSWC Crane Mission Focus Areas:
- Special Missions
- Strategic Missions
- Electronic Warfare / Information Operations

Four Outputs:
- Knowledge
- Contracts
- Hardware
- Software

NSWC CRANE
- Located on 3rd Largest Navy Installation in the World
- No Encroachment & Unencumbered
 - Detachment at Fallbrook, CA

Approved for Public Release; Distribution is unlimited.
Small Arms Air Platform Integration

• Who are we?
 – We are a team of engineers, logisticians, and technicians with vast crew served weapons and electronics integration experience.
 – We have the capability to support the full life cycle of the systems we deploy.
 – We support multiple platform offices and team with industry partners.
 – We take great pride in providing high quality support to our customers in a timely manner.

• What do we do?
 – Design and integrate weapon systems for various aircraft.
 – Fabricate prototype parts for fit checks and testing.
 – Support flight certification process through the NAVAIR Performance Monitors.
 – Provide Finite Element Analysis (FEA) modeling for fatigue and crash loads.
 – Procure production hardware through GOV contracts.
 – Receive, inspect, kit, and deploy high quality systems.
 – Provide interim supply support.
Rapid System Integration

• How can we rapidly integrate weapon systems at a reduced cost that will provide enhanced capability for the fleet?
• How are we using Systems Engineering to solve this?
Systems Engineering Plan

- Established the Process or Guidelines for the Project
- We used applicable Systems Engineering Guides to derive a tailored Systems Engineering Plan
- Used NAVAIR Systems Engineering Technical Reviews (SETR) Guide to establish Checklists and Entrance/Exit Criteria
Tailor vs. Cut

- The use of ‘Tailor’ instead of ‘Cut’ was key to our systems engineering process
 - Tailor: to fit to a particular circumstance
 - Cut: reduction; break off

- Key Questions:
 - How can we apply guides and instructions written for an ACAT I program to a small rapid development effort?
 - What is the purpose of the process/document?
 - Does the purpose add value to the program?
 - How can we benefit from the purpose within cost and schedule?

- Readdressed how we ‘Tailor’ the Guides and Instructions to ensure we’re meeting the intent of the document

- Putting ‘Pen to Paper’ forces tough decisions to be made early and greatly aid in the planning process and gets everyone on the same page
Work Breakdown Structure

- Scoped the Project and Defined Artifacts
- The WBS was created to capture the total effort to support the development, integration and fielding of the 20mm Gun System.
- Based on MIL-HDBK-881A
- Contains a WBS Dictionary for each element.
- Established Common Terms.
- Assigned each WBS Element to a Functional Lead
• Established a Team that could execute the work
• Involved Non-Design Functional Areas from the start of the project
Areas of Responsibility

Project Lead
- Stakeholder Mgt
- Decision Analysis
- Technical Assessment
- Configuration Mgt
- Data Mgt
- Contract Mgt
- Risk Mgt
- Validation

Test Lead
- Test Planning
- Component Testing
- Subsystem Testing
- System Functional Checkout
- Test Execution
- Test Coordination

Systems Engineer
- Technical Planning
- Requirements Mgt
- Requirements Analysis
- Architecture Design
- Implementation
- Interface Mgt
- Verification

Logistics Lead
- Logistics Documents
- Training

Electrical Lead
- Electrical Design
- Electrical Component Fabrication

System Safety Lead
- WSESRI B Data Package
- LSRB Data Package
- System Safety Planning

Mechanical Lead
- Mechanical Design
- Hardware Fabrication

Approved for Public Release; Distribution is unlimited.
Death by Meetings?

- Enforce Time Limits
- Working Meetings
- Follow an Agenda
- Stay Focused
- Low Preparation Workload
 - Most Preparation is Day-to-Day Tasking
- Follow Up
- Clear Expectations

- IPT Meeting
 - Weekly
- Sponsor Meeting
 - Weekly
- Integration WIPT Lead Meeting
 - Daily
- Integration WIPT Meeting
 - Weekly
- Functional Lead Meeting
 - Weekly

Approved for Public Release; Distribution is unlimited.
Project Documentation

- Systems Engineering Plan
- Product Performance Specification
- System/Subsystem Specification
- System/Subsystem Design Description
- Interface Control Document
- Initial Functional Analysis
- Test and Evaluation Strategy
- Test and Evaluation Program Plan
- System Requirements Verification Matrix

- Team Work Plan
- Configuration Management Plan
- Risk Management Plan
- Work Breakdown Structure
- System Safety Program Plan
- System/Subsystem Hazard Analysis
- Interim Support Plan
- User’s Logistics Support Summary
- Acquisition Logistics Support Plan
Document Traceability

NSWC Crane Allocated Baseline

NSWC Crane Product Baseline

NSWC Crane Functional Baseline

PMA-299 Functional Baseline

PMA-299 Product Baseline

Field / Fleet

Working Groups

TPWG
CSWG
SSWG

MH-60 Technical Data Package

FFFW Performance Specification

FFFW SSPP

FFFW ICD

FFFW SRVM

FFFW SSDD

FFFW TES

FFFW SRVM

FFFW SSDD

FFFW Technical Data Package

Legend

Requirements & Test Allocation

Interface Control

Implementation

Verification

System/Subsystem Hazard Analysis

Preliminary Hazard List / Assessment

Lessons Learned, Failure Data, etc.

Specifications, Regulations, Laws, Certification Requirements, etc.

System/Subsystem Hazard Analysis

Legend

Requirements & Test Allocation

Interface Control

Implementation

Verification

NSWC Crane Allocated Baseline

NSWC Crane Functional Baseline

NSWC Crane Product Baseline

Approved for Public Release; Distribution is unlimited.
Design Environment

• Don’t Micro-Manage
 – Allowed the Leads to Lead
 • Helped Leads Identify Risks and Solutions
 • Didn’t ‘Trump’ Functional Lead Decisions
 – ‘Maybe sometimes’
 – Allowed Creativity
 • “My” Design would have looked vastly different
 • Is the system meeting requirements?
• Paperwork increased up the chain
The Line of Integration

• At what point do we draw the line for integration
 – COTS System onto Platform?
 – COTS Subsystems into a System onto Platform?
 – COTS Components into Subsystems into Systems onto Platforms?
 – The higher the better, within Performance, Schedule and Cost

• Use of Analysis of Alternatives and Trade Studies to identifying level of integration
 – Risk vs. Benefit Chart
 • This places the priority on the performance of the end item
 – Cost and Lead Time
 • Often COTS lead times are longer than entire project schedule
Key Documents

- System Subsystem Specification
 - Allocated Requirements to WBS Elements
 - Assigned to Functional Leads
- Interface Control Document
 - Defined External and Internal Functional, Physical, Human Interfaces
 - Established Interface Nomenclature
 - Assigned to Functional Leads
- System Subsystem Design Description
 - Established System Architecture
 - Documented System Wide Design Decisions
 - Quality Factors Allocation
 - Fire Controls Design Decisions
 - Power Subsystem Design Decisions
 - Weapons Ammunition Handling System Design Decisions
 - Aircraft Gun Mounting Adapter Design Decisions
 - Consolidated Trade Studies and Analyses to one Location
 - Alternative System Design Analysis
 - Gun Drive Motor Alternative Design Trade Study
 - Booster Motor Assembly Alternative Design Trade Study
 - M197 Assembly Alternative Design Trade Study
 - Firing Rate Selection and Vibration Analysis
 - System Faults Analysis
 - Hardware vs. Firmware Justification White Paper
 - Booster Motor Requirement Analysis
 - Dispersion/Boresight Analysis
System Architecture

20 MILLIMETER AUTOMATIC GUN HELICOPTER ARMAMENT SUBSYSTEM
A/A49E-27

FIRE CONTROL SUBSYSTEM 1A3
- Weapon Trigger (Cl) 1A3A2
- Gun Control Panel (Cl) 1A3A1
- Blank-Off Plate 1A3A3

WEAPONS AMMUNITION HANDLING SYSTEM 1A2
- Ammo Can (Cl) 1A2A2
- Booster Motor Assembly (Cl) 1A2A1
- Environmental Barrier Assembly (Cl) 1A2A5
- Feed Chute Assembly (Cl) 1A2A4
- Ammo Can Floor Adapter Plate (Cl) 1A2A3

POWER SUPPLY SUBASSEMBLY 1A4
- Power Subsystem (Cl) 1A4A1
- Wire Harness Subassembly (Cl) 1A4A2
 - 1A4A2-W1
 - 1A4A2-W6
 - 1A4A2A1
 - 1A4A2A2
 - 1A4A2-W3
 - 1A4A2-W5
 - 1A4A2-W6
 - 1A4A2-W4

AIRCRAFT GUN MOUNTING ADAPTER 1A1
- Gun Control Unit (Cl) 1A1A2
- Gun Mount (Cl) 1A1A1
- Gun Mount Wire Harnesses (Cl) 1A1A6
 - 1A1A6-W7
 - 1A1A6-W5
- Gun Drive Assembly (Cl) 1A1A3
- M197 Assembly (Cl) 1A1A4
- HLAID 1000P-W (Cl) 1A1A5

Approved for Public Release; Distribution is unlimited.
NSWC Crane as the System Integrator

• RAPID RESPONSE
 – As a DoD Activity funding can be provided immediately avoiding contract lead times
 – This allows us to be fully engaged from the start of the program, working with the sponsor and end user to solidify requirements
 – No contract mods when requirements change
 – Flexibility to adjust to SE process changes
 • Drop non-value added tasks
 • Add emerging tasks to meet goals
Thank you for your time and attention!

For more information on NSWC Crane, please visit www.crane.navy.mil

Images were downloaded via publically accessible websites