Fuze Power Quo Vadis?

55th Fuze Conference
May 26th, 2011, Salt Lake City, UT
Harald Wich
Outline

- History
- Requirements
- Alternative Power Sources
- Liquid Reserve Batteries
- Quo Vadis – Fuze Power ?
Some History

- First time Electric Power required for Proximity Fuzing in the early 1940’s
 - some earlier Patents e.g. US1,769,203 in the 30’s
 - Pye Ltd in GB and USNAVY in US – Mk 32 later on Mk 45, Mk 53
 - first “Reserve Type Battery” US1,658,142

 ⇒ 70 years of history

- My own experience
 - piezoelectric setback generators
 - air – driven alternators
 - thermal battery
 ⇒ dates back 35 years
Requirements general

- **Volume (size) and Weight**
- **Power** = Voltage \(\times \) Current
 - \(\downarrow \) \(\downarrow \) \(\Rightarrow \) \(\mu A \) to 100´s of mA
 - \(\downarrow \) \(\Rightarrow \) a mere 2 V up to 10´s of V
 - \(\Rightarrow \) \(\mu W \) to W
- **Lifetime**
 - \(t_{lt} \) < 10 s to > 600 s
- **Energy**
 - \(\int_{t=0}^{t_{lt}} V(t) \ast I(t) \, dt \) \(\mu J \) up to J
- **Rise time**
 - ms up to 100´s of ms
- **Reliability**
 - 99.xxxx%
- **Storage Life**
 - 10 years +
- **Cost**
 - nil
Requirements

- Fuze Categories
 - PD
 - Detonator
 - 100 µJ M100
 - 5 mJ Silicon Bridge Initiator
 - 50 mJ 1 W/1A
 - 100 mJ LEEFI

- usually a Factor of 3 – 5 (10) in the firing circuit!
Requirements

- **Fuze Categories**
 - PD (classical artillery)
 - SD (Det + Timer)

- **Power Consumption**
 - 2 µW (e.g. digital watch)
Requirements

- **Fuze Categories**
 - **PD** Det
 - **SD** Det + Timer
 - **ET** Det + programmable Timer

Classical artillery

- **600 µW** e.g. RFID-Circuit
Requirements

- Fuze Categories

 classical artillery

<table>
<thead>
<tr>
<th></th>
<th>PD</th>
<th>Det</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SD</td>
<td>Det + Timer</td>
</tr>
<tr>
<td></td>
<td>ET</td>
<td>Det + programmable Timer</td>
</tr>
<tr>
<td></td>
<td>PX</td>
<td>Det + prog. Timer + TX/RX</td>
</tr>
</tbody>
</table>

⇒ some 100 mW´s
Requirements

- Fuze Categories
 - classical artillery
 - PD Det
 - SD Det + Timer
 - ET Det + programmable Timer
 - PX Det + prog. Timer + TX/RX
 - CCF Det + prog. Timer + TX/RX + Control Power

▷ some W´s
Requirements

- **Fuze Categories**
 - PD Det
 - SD Det + Timer
 - ET Det + programmable Timer
 - PX Det + prog. Timer + TX/RX
 - CCF Det + prog. Timer + TX/RX + Control Power

- **Operating Times**
 - short $\leq 10 \text{–} 20 \text{s}$ direct fire
 - medium $< 100 \text{ s}$ indirect fire Mortars
 - long $< 200 \text{ s}$ indirect fire Arty 105/155 mm
 - x-long up to 600 s gliding and/or powered

- **Energy**

![Energy Graph](image)
Alternative Energy Sources

- Where could the energy come from

- Pressure
- Temperature

- Thermoelectric
 - Access
Alternative Energy Sources

- Where could the energy come from

- pressure
- temperature
- setback force
 - piezoelectric
 - electromagnetic
- thermoelectric
 - access
- angular acceleration
 - electromagnetic

Source requires storage device
Alternative Energy Sources

- Where could the energy come from

- pressure
temperature

 ↩️ thermoelectric
 - access

 ↩️ piezoelectric

 ↩️ setback force

 ↩️ angular acceleration

 ↩️ in-flight vibration

 ↩️ electromagnetic

source requires storage device
Alternative Energy Sources

- Where could the energy come from

- pressure
- temperature
- setback force
- piezoelectric
- electromagnetic
- in-flight vibration
- piezoelectric
- electromagnetic
- angular acceleration
- electromagnetc

source requires storage device
- range of velocity
- air intake
- EM air turbine
- airstream
- aerodynamic heat
- thermoelectric
- thermo photovoltaic
- rise time
- high speed only

setback force
Alternative Energy Sources

- Where could the energy come from

 - pressure
 - temperature
 - thermoelectric
 - access
 - in-flight vibration
 - piezoelectric
 - electromagnetic
 - angular acceleration
 - setback force
 - source requires storage device
 - range of velocity
 - air intake
 - EM air turbine
 - air stream
 - aerodynamic heat
 - thermoelectric
 - thermo photovoltaic
 - rise time
 - high speed only

- Capacitive energy storage

<table>
<thead>
<tr>
<th>Storage of</th>
<th>@ 10 V</th>
<th>@ 30 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mJ</td>
<td>20 μF</td>
<td>2.2 μF</td>
</tr>
<tr>
<td>100 mJ</td>
<td>2000 μF</td>
<td>220 μF</td>
</tr>
<tr>
<td>10,000 mJ</td>
<td>0.2 F</td>
<td>0.022 F</td>
</tr>
</tbody>
</table>

Values in mm³:
- 0.22 mm³
- 22 mm³
- 222 mm³
- 0.2 µF
- 0.022 µF
- 2.8 mm
- 13 mm
Alternative Energy Sources

- Charging and discharging the capacitor

Piezo Generator

- PG-Voltage proportional to pressure (= acceleration)
 - peak voltage @ peak pressure
 - ms only ⇒ high currents, matching losses
- e.g. storage of 10 mJ
 - @ 10 V ⇒ 200 µF ⇒ 1.1 A (2 ms)
 - @ 30 V ⇒ 22 µF ⇒ 0.33 A (2 ms)

ElectroMagnetic Generator

- EMG-Voltage proportional to # of turns/inductance
 - natural frequency $f_r = \left(2 \pi \sqrt{L_i C_s}\right)^{-1}$
- e.g. storage of 10 mJ
 - @ 10 V ⇒ 200 µF ⇒ 112 Hz (10 mH)
 - @ 30 V ⇒ 22 µF ⇒ 339 Hz (10 mH)

Discharging

No constant Voltage during discharge!
Alternative Energy Sources

- Their Energy Output
 - some examples

- My Conclusion
 - no significant improvement of energy generated since 35 years
 - limited to
 - low energy pyrotechnics
 - short time of flight
 - simple functions
Liquid Reserve Batteries

- **Legacy**

 - First Reserve Battery
 - Fuze Battery
 - MOFA Fuze Battery
 - Mk53 Fuze
Liquid Reserve Battery current

The workhorse (type 597) Lithium Thionyl Chloride

- most common fuze battery in Europe (European complement to MOFA-Battery)
- produced in 100 thousand’s
- powerful (0.25 W/cm² active cell area)
- wide temperature range -46°C to +63°C
- superior activation mechanism
 - threefold MIL STD 883 1.5 m drop safety
 - > 900 g activation
 - fast - 10 ms - activation under spin environment
- very long shelf life – up to 20 years
- reliable
- variants up to 15 V @ 600 mA
 30 V @ 300 mA
 36 V @ < 100 mA
- same form factor, same activation
Liquid Reserve Battery future

- How big is their Energy-/Power-Density
 - This volume equals 3,000 mJ (Electrochemistry only)

 - What's needed for a complete LRB

 - Electrochemistry
 - Electrolyte separated from Cell Stack
 - Activation System

For low and medium power, a single cell will be the preferred solution.
Small Liquid Reserve Batteries

- Can be very small whilst maintaining their excellent properties
 - superior Power-/Energy-Density
 - long shelf life
 - wide temperature range
 - excellent reliability
 - low cost

- Some recent examples
 - M235
 - M80
 - MRB
 - 40 mm AB
Yet a new small Liquid Reserve Battery

- For small and medium calibre applications

- 12 mm diameter
- 12 mm high
- single cell Lithium Battery
- 3.0 ÷ 3.6 V closed circuit voltage
- up to 50 mA load current
- setback/spin activation mechanism
 - > 7000 g activation
 - fast - < 5 ms - activation under spin environment
- lifetime > 50 s
- wide temperature range -46°C to +63°C
- very long shelf life – up to 20 years
- reliable
- low cost

Lithium Liquid Reserve Batteries provide superior Energy Density
Thank you for your Attention!

Any Questions, Comments, Objections, …
Diehl & Eagle Picher in a Nutshell

- About the company
 - US/German Joint Venture; Shareholders are Eagle Picher Technology, Joplin MO and Diehl BGT Defence, Ueberlingen GE
 - Located in Roethenbach Germany
 - Thermal- and Fuze-Batteries and Battery Packs
 - R&D and Production of the above Batteries
 - Annual Turn Over > 10 mEur
Diehl & Eagle Picher Contact

- **How to Contact us**
 - **Presenter**: Harald Wich
 - **Mail**: Diehl & Eagle Picher
 Fischbach Strasse 20
 90552 Roethenbach
 - **Phone**: +49-911-957-2073
 - **Fax**: +49-911-957-2100
 - **Email**: harald.wich@diehl-eagle-picher.com