☆JUNGHANS microtec

Course Correction Fuzes Integration Technologies

55th Annual Fuze Conference "Fuzing's Evolving Role in Smart Weapons"

Salt Lake City, UT - May 24-26, 2011

Max Perrin JUNGHANS Microtec

Outline

- Course Correction Fuze Main technology issues
- Main functions
- Technology evolutions and technical challenges
- Example of current Course Correction Fuze programmes
- Integration solutions for 1D-CCF
- Future trends
- Conclusion

Company Presentation

- A leader in the field of ammunition fuzes and S&A devices
- Full range of products
- Key competences in
 - Fuzing technologies
 - Micro-technologies
 - Ammunition electronics

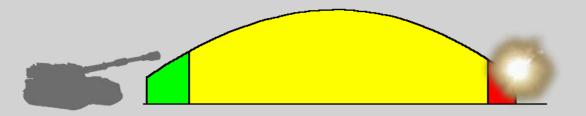
Course Correction Fuzes Main Technology Issues

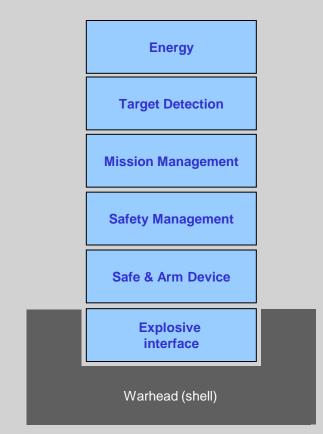
- Standard fuze size
 - Fitted on conventional munitions
- Additional functionalities and performances, in a fuze enveloppe
 - Fuzing functions (MOFA type)
 - + Course correction functions
 - Electronics and guidance device

#JUNGHANS microtec

Gun environment

- Ramming / Firing
- Standard interfaces with weapon systems
- Data link with weapon system
 - Before flight / during flight

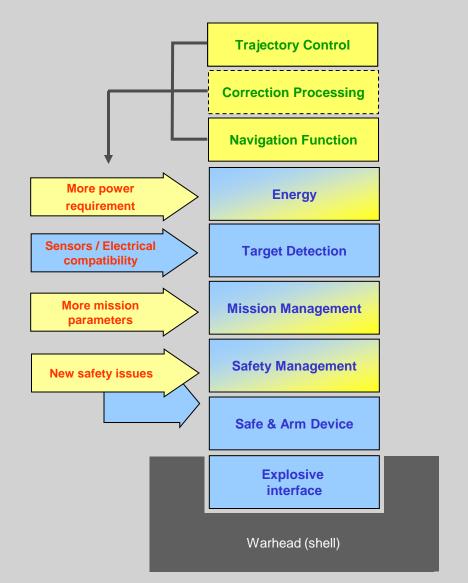




CCF – Main Functions

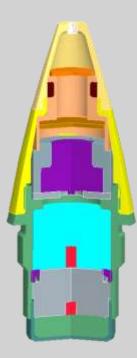
- Fuzing functions and modules
 - Safety
 - Safety environment sensors + safety management + firing train interruption
 - Mission management
 - Data-Link with weapon, before and/or in-flight (mission parameter programming)
 - Target detection :
 - Sensors + processing + triggering decision
 - Warhead initiation
 - Firing train + interfaces

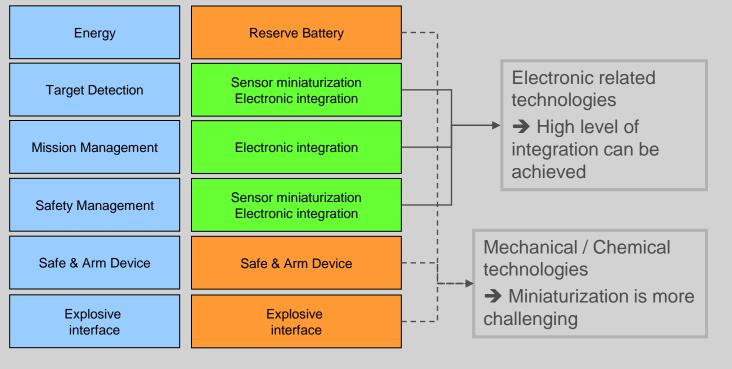
☆JUNGHANS


microtec

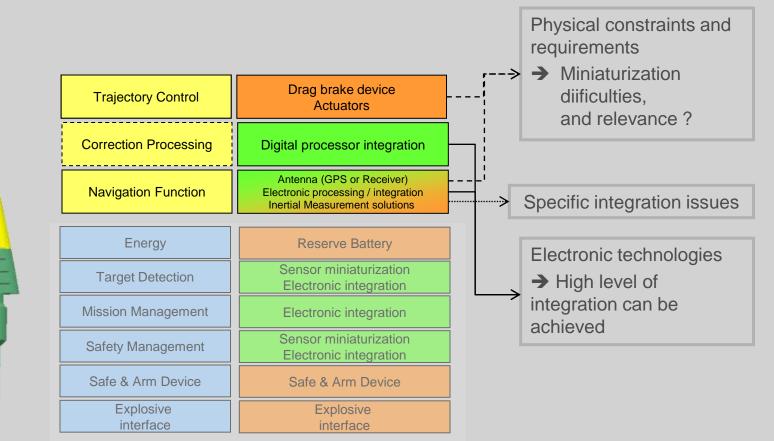
CCF – Main Functions

Fuzing functions


╋


- Course Correction Functions
 - Navigation Function: trajectory estimation
 - Correction Computing: algorithm + processor
 - Fuze embedded processing
 - or Weapon system processing
 - Trajectory Control: air control device + actuators
- The implementation of these functions has an impact on the requirement and the design of the fuze's other functions

Technology Evolutions Fuzing Functions


- Fuzing functionalities and capabilities have been significantly improved due to the electronic and sensor technology evolution (dual use components)
 - More versatility, operational flexibility, target detection performance
 Multifunction fuzes
- Difficult to get the same technology progress with non-electronic and specific fuze modules

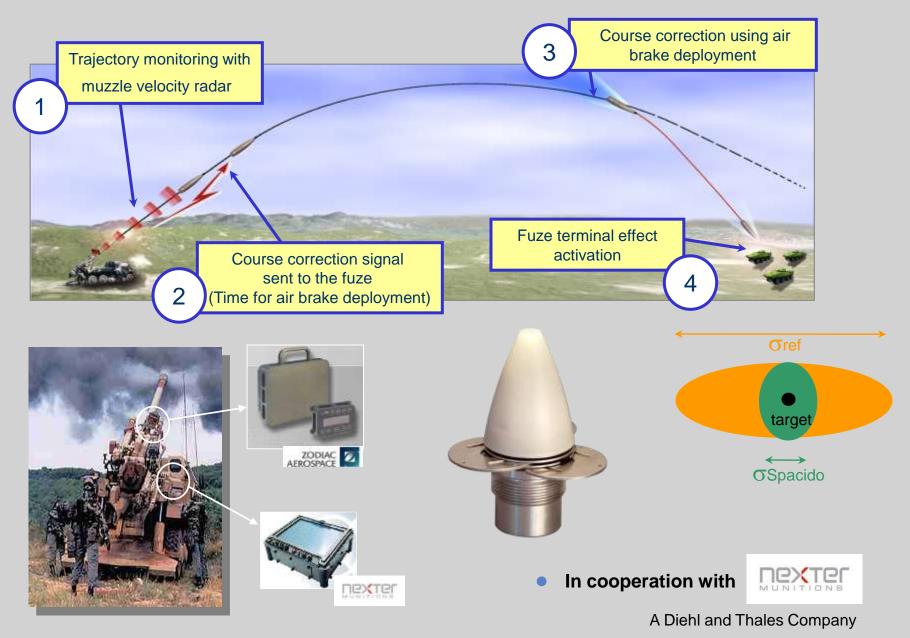
Technology Evolutions Course Correction Functions

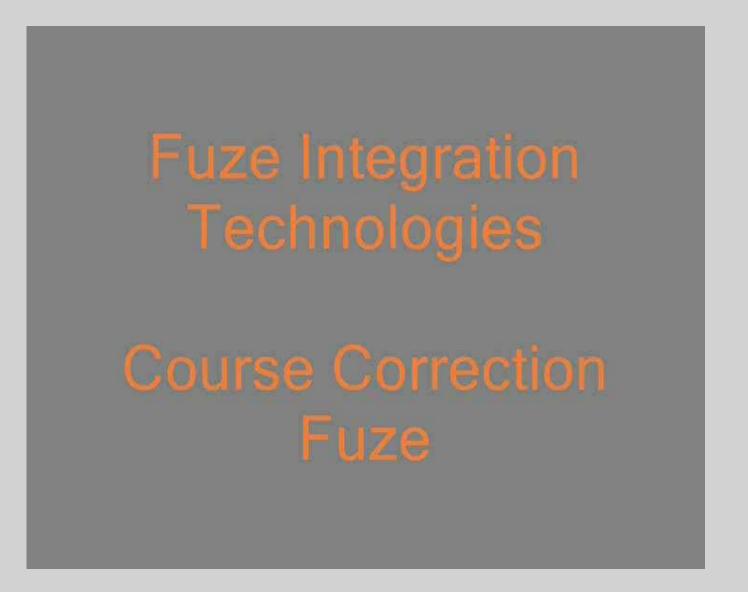
- Implementation of Course correction functions
 - Require significant space in the standard fuze architecture
 - Use various technologies which cannot be highly integrated

CC Fuze Development Main Technology Challenges

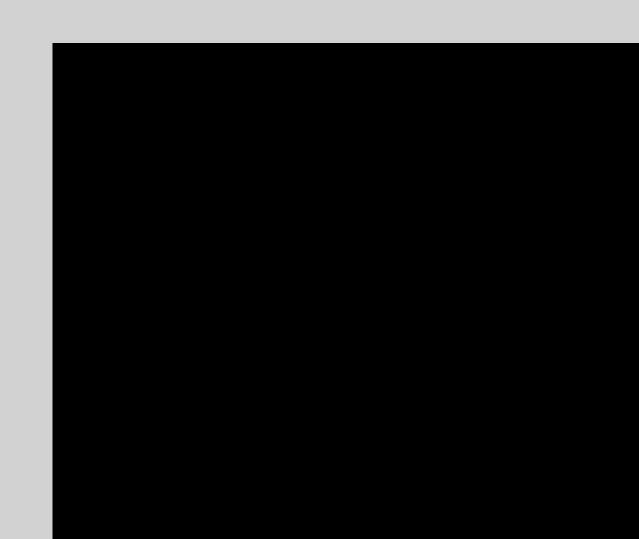
- Main objective: Low-risk low-cost design approach
 - Leverage in-service modern fuze design
 - Use existing qualified components
- Main challenges
 - Comply with the standard fuze size: STANAG 2916 contour / short intrusion
 - Re-use available sub-assemblies, in their current design
 - Optimise the integration for some of the fuze functions to provide space for the additional course correction functions
 - Cope with available (autonomous) power supply
 - Deal with compatibility issues between the different technologies living together in a small space, in particular:
 - Electromagnetic compatibility and interference issues within the various electronic circuits
 - Various antenna type integration, for different purposes, inside the fuze enveloppe

CC Fuze Development Example of current CCF programmes


- JUNGHANS is today implementing integration solutions in major course correction fuze programmes carried out in Europe
 - Relying on modern multifunction fuze architecture and proven modules and components
- Two concepts based on different navigation and localization solutions:
 - → very different concept and design
 - ➔ different integration problems and solutions
 - SPACIDO Fuze: in co-operation with NEXTER, France
 - "Non-GPS" trajectory navigational system solution Trajectory estimation based on the projectile initial velocity measurement by the muzzle velocity radar (MVR)
 - Range correction order sent to the fuze by the MVR
 - <u>ECF (European Correcting Fuze)</u>: in co-operation with BAE Systems, UK, (GCSM) and Sweden (GCSW)
 - GPS based solution
 - Trajectory estimation based on the use of GPS C/A receiver

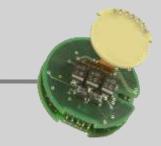

SPACIDO System

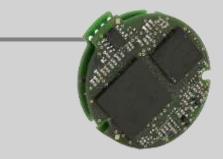
SPACIDO



ECF (European Correcting Fuze)

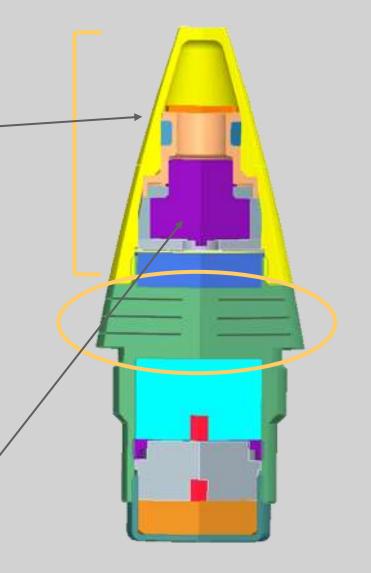
#JUNGHANS microtec


☆JUNGHANS *microtec*



Integration Solutions for 1D-CCF Basic Options

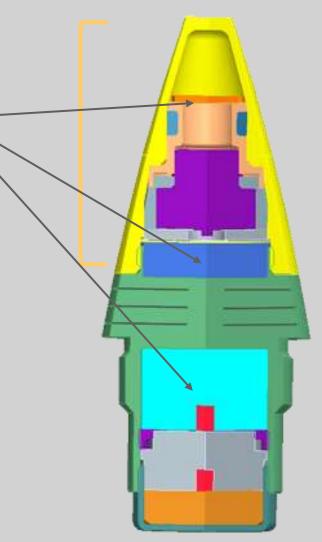
- Re-use proven sub-assemblies, as they are
 - Reserve battery Lithium
 - Mechanical Safe & Arm Unit
 - Even if they are bulky items,
 - More cost effective and less risky
- Re-use target detection device (HoB sensor)
 - Slight adaptation to cope with space compatibility with other electronic boards, but same design
- Share the processing unit between target detection signal processing and correction processing
 - Select suitable component to cope with computation power requirement



Integration Solutions for 1D-CCF

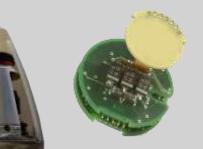
- 1D-CCF are fitted with drag brake device located in the central part of the fuze
 - Benefit: The nose cone of the fuze is free for antenna and radome integration _____
 - SPACIDO: Data-link receiver with antenna
 - ECF: GPS receiver and antenna
- Power requirements for 1D-CC
 - Aerodynamical control devices do not need high power actuators
 - Functioning of the various fuze modules and related power consumption can be managed all along the flight
 - Benefit: The power requirement is compatible with current reserve battery features

Integration Solutions for 1D-CCF


♯JUNGHANS *microtec*

- Board interconnection techniques
 - More constraints: numerous boards, more data, no space available for connections, testing requirements
 - Optimized architecture to reduce interconnections
 - Flexprint circuits

G-hardening


- Possibility to keep and implement proven techniques from modern electronic artillery fuzes
 - Fuze frame design
 - Electronic board design
 - Potting material and techniques

Integration Solutions for CCF Antenna Integration

#JUNGHANS microtec

- SPACIDO
 - Integration of an embedded data-link receiver
 - receiver / decoder board
 - with "looking backward" antenna
 - Compatible with other modules requiring external access
 - STANAG 4369 programming coil
 - HOB sensor antenna and signal processing board

• ECF

- Integration of an embedded GPS receiver
 - GPS receiver board
 - with antenna (revolution symetric radiation pattern)
- Compatible with other modules requiring external access
 - Programming interface for high-rate data transmisison
 - HOB sensor antenna and signal processing board

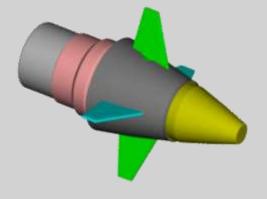
Other integration issues and technology solutions

- Interference problems between the different electronic modules operating in a very close vicinity
 - Converters, processors, oscillators, etc
- Data-link for fuze programming before flight
 - Low rate or high-rate depending on the required mission parameters (Fuzing parameters, GPS ephemeris, etc..)

• ... and always

- Keep good reliability
- Keep high level of survivability to harsh conditions created by gun firing
 - High-G hardening on new technologies

☆JUNGHANS *microtec*


No room for physical shielding: Therefore the design requires very fine optimization (PCB layout, circuit frequency selection)

Optimization of the communication protocol to lower hardware and software constraints

Trends for guidance integrated fuzes

- Integration of future CCF concept or guidance integrated fuzes:
 - Much more tricky issue to keep all functions fitted into a standard short intrusion fuze enveloppe
 - Difficult to re-use conventional fuze components
- Some new challenges:
 - Guidance solutions
 - Navigation, incl. Inertial Measurement
 - New safety issues for the artillery systems
 - High-G hardening of new technology devices

- Some technological breakthrough will be required to meet the requirements in terms of:
 - Miniaturization, cost, reliability, safety for such products

Conclusion

- Course Correction Fuze development has created significant technical challenges to the fuze designer who has now to integrate new functionalities in the same fuze enveloppe
- Thanks to the progress achieved in electronic technologies but also in the fuze integration techniques, it is now possible to design smart fuzes featuring significant functionalities, including course correction capability
- JUNGHANS has taken on the technological challenges and has implemented solutions
 - To provide the user with smart fuzes, but still affordable and reliable
 - To prepare the technological breakthrough required for future fuze generation

#JUNGHANS microtec

Max PERRIN Chief Technical Officer max.perrin@junghans-microtec.de max.perrin@junghans-t2m.fr