55th Annual Fuze Conference Fuzing's Evolving Role in Smart Weapons

Development of a new MEMS High-g Accelerometer

R. Külls, S. Nau, S. Heß, N. Pilous Fraunhofer Ernst-Mach-Institut EMI

Salt Lake City, May 26th 2011

OUTLINE

- Introduction
 - High-g Applications
- Theory
 - Transient Excitations
- Design
- First Experimental Data
 - Hopkinson Bar
 - 200,000 g Measurement
- Summary and Outlook

High-g Applications: Research

- Analysis of highly dynamic processes
 - Shock-testing of electronics Measurement range needed: 50,000 g
 - Material characterization g-Range > 80,000 g
 - Penetration processes g-Range > 100,000 g
 - Near field blast g-Range > 100,000 g

High-g Applications: Military

- High-g hardened fuzing in smart weapons
 - Large warheads
 - Artillery shells
 - Upcoming: **Smaller calibers** > 100,000 g
- The smaller the ammunition, the bigger the acceleration

4

Pictures: Wikipedia

High-g Applications: Military

- High-g hardened fuzing in smart weapons
 - Large warheads
 - Artillery shells
 - Upcoming: Smaller calibers
 > 100,000 g

- The smaller the ammunition, the bigger the acceleration
- Need for small, affordable (very-)high-g accelerometer

Pictures: Wikipedia

Basics of High-g Accelerometry

- Shock pulse:
 - "short", "discontinuous", "rapidly varying"

- Accelerometer:
 - Spring-mass-system with resonant frequency
 - Displacement results in signal

Excitation of a Spring-Mass-System: Sample Pulse

Excitation of a Spring-Mass-System: Analytical Solution

How to avoid oscillations and over-excitation?

- 1. Damping (+ stops)
- 2. Higher resonant frequency

Reducing Oscillations

- **5%** Damping:
 - Over-excitation 15% -> 10%
 - Oscillations 20% -> 10% -> 0%

- 10x Resonant Frequency:
 - Over-excitation 15% -> 2%
 - Oscillations 20% -> 2%

EMI Accelerometer

- Undamped, piezoresistive, MEMS accelerometer
- Status of development
 - Design is patent pending
 - First specimens were successfully manufactured and tested
- Different variants exist:
 - Measurement range > 100,000 g
 - Resonant frequency 1 3 MHz
 - Sensitivity 0.1 1 µV/V_{exc}/g

EMI Accelerometer

- Manufactured with standard silicon processes, single sided
- Sensor-chip about 2 x 1 mm²
- Straightforward integration of 2D and 3D measurement capabilities

tarres tarres formed formed formed for	ani kumuk
contrast contrast contrast contrast cont	cato secondo -
controls controls controls controls when the	100000000000000000000000000000000000000
terms terms terms terms terms terms	
unitary unitary unitary unitary unitary	care successive
same and a second second	to summary
searches and the and the second second second	, umaine
sources sources sources sources at	in merren
UNITED UNITED UNITED VIETED VIETE	Dr. sciencestor
ANT THE ATTEND ANT THE ATTEND	
and the second formed to be a second to be	
mental mental mental mental me	the strength
COLLEGE COLLEGE COLLEGE COLLEGE COLLEGE	and community
mentan mentan mentan mentang men	of Journey
were were were were we	in tormal
current contrary contrary contrary contrary	the summery
inempt instant instant instant instant	on name
meno meno meno me	the summer
to the Allino Assess Assess and	of Augusta
strength through the state of the state	OUT ARETTED

EMI Accelerometer: Functional Principle

Main components:

- Flexural plate
- Self-supporting piezoresistive elements
- Full Wheatstone-bridge
- Functional principle:
 - Inertial forces cause deflection of plate
 - Straining of piezoresistive elements
 - Change in resistance is measurement signal

Hopkinson Bar Measurements

- Assessment of accelerometer performance on Hopkinson bar
- Comparison:
 - First peak well reproduced
 - Differences after breakaway

Shock Plate Test: Reference

Shock Plate Test: Comparison

Flyer Plate Test: Comparison

200,000 g Measurement

200,000 g Measurement

Summary

EMI accelerometer has been designed and manufactured

- Design patent pending
- Standard silicon processes
- Successful proof of concept
- The EMI design combines:
 - ... the sensitivity of medium g-range sensors (> 0.2 $\mu\text{V/V}_{exc}/\text{g})$ (proven)
 - ... with the survivability of high g-range sensors (> 200.000 g) (proven)
 - ... while having a uniquely high bandwidth (> 2 MHz) (not meas. yet)

Outlook

Determination of accelerometer performance is to be completed

- Further development will focus on:
 - 1. Realization of an "easy to use" and robust package
 - 2. Monolithical integration of bi- or tri-axial accelerometers

Thank you for your Attention!

This work was funded by the Federal Office for Defence Technology and Procurement BWB (Bundesamt für Wehrtechnik und Beschaffung)

Further Information:

Robert Külls Fraunhofer EMI Am Klingelberg 1 79588 Efringen-Kirchen / Germany Tel.: +49 7628 / 9050 – 736 E-mail: robert.kuells@emi.fhg.de Dr. Siegfried Nau Fraunhofer EMI Am Klingelberg 1 79588 Efringen-Kirchen / Germany Tel.: +49 7628 / 9050 – 685 E-mail: siegfried.nau@emi.fhg.de

