MK419 Mod 1
Multi-Function Fuze
Product Improvement Program

BY

Richard Chapman
Naval Surface Warfare Center
Dahlgren Division
• PERFORMANCE:
Multi-Function Fuze (MFF) Operational Modes

• CYCLE TIME & YIELD:
Statistical Process Control Handshake for Cycle Time and Yield

• MOD 1 COMPONENT SUMMARY:
Performance, Cycle Time, Yield, and Cost with Full Module Assembly
PERFORMANCE:
Multi-Function Fuze (MFF)
Operational Modes
Multi-Function Fuze (MFF)
Operational Modes

The MFF can fit 76mm and 5 inch rounds.
CYCLE TIME & YIELD: Statistical Process Control Handshake for Cycle Time and Yield
Statistical Process Control
For Cycle Time Reduction

Decreased Mechanical Part Count Simplifies Assembly (Reduces Cycle Time) And Improves Yield

Mechanical Count Summary

<table>
<thead>
<tr>
<th>Component</th>
<th>MOD-0</th>
<th>MOD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Boards & Interconnect Flexes</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Lap Solder Joints</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Other Hand Soldered Connections</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Custom Shimming Operations</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mechanical Parts*</td>
<td>37</td>
<td>31</td>
</tr>
</tbody>
</table>

CCAs and purchased assemblies (Booster, S&A, Det, etc.) are considered a single mechanical part

Mod 1 Cycle Time is reduced by 65%
Statistical Process Control
For Yield

• Initial Review of Product Parameters
 • FMEA Design
 • Technical Data Package

• Determine Process Capability
 • FMEA Manufacturing
 • Determine process capability
 • $C_p = \frac{(USL-LSL)}{(6*\text{Sigma})}$
 • $C_{pl} = \frac{(\text{Mean}-LSL)}{(3*\text{Sigma})}$
 • $C_{pu} = \frac{(USL-\text{Mean})}{(3*\text{Sigma})}$
 • $C_{pk} = \text{Min}(C_{pl},C_{pu})$

CENTER TARGET
+ SMALL SIGMA
+ WIDE USL – LSL
= GOOD CAPABILITY

EXCELLENT YIELD
Statistical Process Control

Cycle Time and Yield Handshake

Fewer steps not only reduce Cycle Time, but increases Yield due to reduced manipulative errors.

<table>
<thead>
<tr>
<th>Spec Limit</th>
<th>Centered Yield (One Step)</th>
<th>Percent Yield (89 Steps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1σ > USL, LSL</td>
<td>68.27%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2σ > USL, LSL</td>
<td>95.45%</td>
<td>1.59%</td>
</tr>
<tr>
<td>3σ > USL, LSL</td>
<td>99.73%</td>
<td>78.62%</td>
</tr>
<tr>
<td>4σ > USL, LSL</td>
<td>99.99%</td>
<td>99.44%</td>
</tr>
<tr>
<td>5σ > USL, LSL</td>
<td>100.00%</td>
<td>99.99%</td>
</tr>
<tr>
<td>6σ > USL, LSL</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

95% Fuze Yield

Distribution Statement A – Approved for Public Release; Distribution is unlimited
MOD 1 COMPONENT SUMMARY: Performance, Cycle Time, Yield, and Cost with Full Module Assembly
Major Subassemblies And Components

- Mag Link Assembly
- Radome
- Controller CCA
- Antenna Assembly
- Booster
- Fuze Housing
- Detonator Plug Assembly
- Battery Assembly
- Retaining Ring Assembly
- Safe and Arm

Distribution Statement A – Approved for Public Release; Distribution is unlimited
Radome And Mag Link Assembly

IMPROVEMENTS FOR MOD 1

- **Performance:**
 N/A

- **Cycle Time:**
 Simplified assembly

- **Yield:**
 Automation increases yield
 Cpk increase

- **Cost:**
 Component cost reduction

<table>
<thead>
<tr>
<th>MOD-1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ No change – No risk</td>
<td></td>
</tr>
<tr>
<td>✔ Eliminated individual tuning costs</td>
<td></td>
</tr>
<tr>
<td>✔ Automated reflow soldering process</td>
<td></td>
</tr>
<tr>
<td>✔ Small, low cost capacitors</td>
<td></td>
</tr>
<tr>
<td>✔ Alignment post assembly aids</td>
<td></td>
</tr>
<tr>
<td>✔ Press interference fit</td>
<td></td>
</tr>
</tbody>
</table>
Antenna Assembly Updates Eliminate Tuning, Simplify Assembly, And Reduces Cost

IMPROVEMENTS FOR MOD 1

- **Performance:**
 Dielectric improvement
 ESD protection improvement

- **Cycle Time:**
 Simplified assembly

- **Yield:**
 Automation increases yield
 Cp better on target
 Cpk increase

- **Cost:**
 Component cost reduction

<table>
<thead>
<tr>
<th>MOD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Simplified geometry</td>
</tr>
<tr>
<td>✓ Improved quality process & controls</td>
</tr>
<tr>
<td>✓ Standard coax cable connectors</td>
</tr>
<tr>
<td>✓ Consistent & repeatable performance</td>
</tr>
<tr>
<td>✓ Excellent, proven dielectric control</td>
</tr>
<tr>
<td>Improved design margin on:</td>
</tr>
<tr>
<td>✓ Return loss</td>
</tr>
<tr>
<td>✓ Isolation</td>
</tr>
<tr>
<td>✓ 2-way gain</td>
</tr>
<tr>
<td>✓ Autoclave bond film.</td>
</tr>
<tr>
<td>✓ Survived extensive ATK air gun shock tests</td>
</tr>
<tr>
<td>✓ Rail gun test successful.</td>
</tr>
</tbody>
</table>

Distribution Statement A – Approved for Public Release; Distribution is unlimited
MMIC Receiver

- MOD1 Receiver successfully designed, repackaged, built, and tested
- Increased LO drive range helps eliminate expensive unit tuning
- Successfully integrated and tested Receiver MMIC

IMPROVEMENTS FOR MOD 1

- **Performance:**
 - ESD protection improvement
 - Design margin improvement

- **Cycle Time:**
 - Eliminate unit to unit tuning

- **Yield:**
 - Cp better on target
 - Cpk increase

- **Cost:**
 - Reduced chip size

MOD-1

- Miniaturized 4x4mm QFN
- Integrated onto Controller PWB
- Standard pick-n-place and reflow
- Added ESD protection to improve reliability
- Significantly improved design margin
- Eliminates unit to unit tuning

Significantly Improved Design Margin Helps Eliminate Unit Tuning And Reduces Cost
MMIC Transmitter

PIP planned two Transmitter MMIC design iterations

1st Design Iteration
- Vendor modeling error resulted in faulty ESD cells
- Vendor fused cells open, resulting in spec compliant MMICs
- Successful integration testing

2nd Design Iteration
✓ Updated design for ESD cell
✓ Updated core design to re-center frequency & increase output power (yield improvements)
✓ Modulation Port Sensitivity Pulling reduced range and opened specification. Reduced resistor binning.

IMPROVEMENTS FOR MOD 1

▪ Performance:
 ESD protection improvement

▪ Cycle Time:
 Eliminate unit to unit tuning

▪ Yield:
 Cp better on target
 Cpk increase

▪ Cost:
 Reduced chip size

Distribution Statement A – Approved for Public Release; Distribution is unlimited
Controller Circuit Card Assembly

IMPROVEMENTS FOR MOD 1

- **Performance:**
 Reduced power consumption

- **Cycle Time:**
 Reduced soldering
 Standard reflow

- **Yield:**
 Automation increases yield
 Cp better on target
 Cpk increase

- **Cost:**
 Reduced chip size
 Integrate PWBs

<table>
<thead>
<tr>
<th>MOD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Integrated into one PWB</td>
</tr>
<tr>
<td>✓ Panel fits twice as many PWBs</td>
</tr>
<tr>
<td>✓ Obsolete parts resolved</td>
</tr>
<tr>
<td>✓ Miniaturized components</td>
</tr>
<tr>
<td>✓ New potting eliminates component staking</td>
</tr>
<tr>
<td>✓ Improved component clearances for potting flow</td>
</tr>
<tr>
<td>✓ Improved component clearances</td>
</tr>
<tr>
<td>✓ No taping required</td>
</tr>
<tr>
<td>✓ Improved clearance and fitment</td>
</tr>
<tr>
<td>✓ Standard connectors used for PWBs and Antenna</td>
</tr>
<tr>
<td>✓ Standard re-flow process</td>
</tr>
<tr>
<td>✓ Repackaged and decreased power consumption</td>
</tr>
</tbody>
</table>

Controller Assembly Updates Simplify Assembly, Eliminate Tuning, And Reduces Cost
Fuze Housing And Battery Assembly

IMPROVEMENTS FOR MOD 1

- **Performance:**
 Improved battery

- **Cycle Time:**
 Integrated fuze housing

- **Yield:**
 Reduced steps increases yield

- **Cost:**
 Reduced chip size
 Integrate PWBs

<table>
<thead>
<tr>
<th>MOD-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Integrated into one part</td>
</tr>
<tr>
<td>✓ Simplified assembly</td>
</tr>
<tr>
<td>✓ Lithium-SOCl2 reserve battery</td>
</tr>
<tr>
<td>✓ Standard sockets</td>
</tr>
<tr>
<td>✓ Simple assembly done outside of fuze</td>
</tr>
<tr>
<td>✓ Eliminated shimming</td>
</tr>
<tr>
<td>✓ Miniaturized components</td>
</tr>
<tr>
<td>✓ Firing cap re-sized for M100</td>
</tr>
</tbody>
</table>

Fuze & Battery Assembly Design Updates Simplify Assembly And Reduces Cost

Distribution Statement A – Approved for Public Release; Distribution is unlimited
Detonator Assembly, S&A, And Booster

IMPROVEMENTS FOR MOD 1

- **Performance:**
 Improved detonator

- **Cycle Time:**
 Easy Detonator Assembly

- **Yield:**
 Reduced steps increases yield

- **Cost:**
 N/A

MOD-1

- M100
- Detonator test points accessible
- Simple assembly done outside of fuze
- Redundant positive and ground contacts
- Unchanged from MOD-0
- Unchanged from MOD-0
Battery

• MOD0 MK44 Lead Acid Reserve Energizer is obsolete
• Previous MFF studies identified and tested a replacement battery:

Lithium-SOCl2 Reserve Battery

IMPROVEMENTS FOR MOD 1

▪ Performance:
 Improved rise time

▪ Cycle Time:
 N/A

▪ Yield:
 N/A

▪ Cost:
 Battery cost reduced

<table>
<thead>
<tr>
<th>PIP Design Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Batteries Procured</td>
</tr>
<tr>
<td>✓ Simplified Assembly</td>
</tr>
<tr>
<td>✓ Battery Tests Verify Battery Exceeds Goal</td>
</tr>
<tr>
<td>✓ Battery Tests Verify Rise Time Exceeds Threshold</td>
</tr>
<tr>
<td>✓ Simulation & Lab Tests Verify Functionality</td>
</tr>
</tbody>
</table>

Distribution Statement A – Approved for Public Release; Distribution is unlimited
Summary

✓ **PERFORMANCE:**
 - Going forward for HSMSTs
 - New hardware has improved tolerance

✓ **CYCLE TIME:**
 - 72 parts for Mod 0 compared to 40 parts for Mod 1
 - Mod 1 Cycle Time is reduced by 65%

✓ **YIELD:**
 - Less steps for Mod 1 than Mod 0, less manipulation error
 - Automation means better Cp and increased Cpk (better yield)

✓ **COST:**
 - Electrical component cost less due to Moore’s Law
 - Moore’s Law: in 10 years same component price drops by 100x

Acknowledgements:
Mr. James Ring – ATK Technical Lead
Mr. Marty Davis – ATK Program Manager