



# MK419 Mod 1 Multi-Function Fuze Product Improvement Program

BY

Richard Chapman Naval Surface Warfare Center Dahlgren Division



# OUTLINE



### • PERFORMANCE:

Multi-Function Fuze (MFF) Operational Modes

### • CYCLE TIME & YIELD:

Statistical Process Control Handshake for Cycle Time and Yield

### • MOD 1 COMPONENT SUMMARY: Performance, Cycle Time, Yield, and Cost with Full Module Assembly







# PERFORMANCE: Multi-Function Fuze (MFF) Operational Modes





# Multi-Function Fuze (MFF) **Operational Modes**





Simplifies logistics. Uses IM Explosives.



performance, accuracy and versatility.

#### The MFF can fit 76mm and 5 inch rounds.





# CYCLE TIME & YIELD: Statistical Process Control Handshake for Cycle Time and Yield





# Statistical Process Control For Cycle Time Reduction





| Mechanical Count Summary             | MOD-0 | MOD-1 |
|--------------------------------------|-------|-------|
| Circuit Boards & Interconnect Flexes | 6     | 3     |
| Lap Solder Joints                    | 16    | 0     |
| Other Hand Soldered Connections      | 12    | 6     |
| Custom Shimming Operations           | 1     | 0     |
| Mechanical Parts*                    | 37    | 31    |

\* CCAs and purchased assemblies (Booster, S&A, Det, etc.) are considered a single mechanical part

### Mod 1 Cycle Time is reduced by 65%

Decreased Mechanical Part Count Simplifies Assembly (Reduces Cycle Time) And Improves Yield



# Statistical Process Control For Yield



### • Initial Review of Product Parameters

- FMEA Design
- Technical Data Package





## X Bar & S Statistical Process Control Shewhart Rules (Yield Consequence)





A single point outside the three sigma limit
 Two of three pts outside the two sigma limit
 Four of Five pts outside the one sigma limit
 Eight in a row on the same side of centerline

http://asq.org/learn-about-quality/statistical-processcontrol/overview/overview.html

Three Sigma Limit

Two Sigma Limit

**One** Sigma Limit

Average



# Statistical Process Control Cycle Time and Yield Handshake



Fewer steps not only reduce Cycle Time, but increases Yield due to reduced manipulative errors.





Distribution Statement A - Approved for Public Release; Distribution is unlimited





# MOD 1 COMPONENT SUMMARY: Performance, Cycle Time, Yield, and Cost with Full Module Assembly



## Major Subassemblies And Components

Surface Warfare Center Division







# **Radome And Mag Link Assembly**



# IMPROVEMENTS FOR MOD 1 • Performance: N/A

• Cycle Time: Simplified assembly

• Yield: Automation increases yield Cpk increase

• Cost: Component cost reduction



#### Mag Link Assembly Updates Simplify Assembly, Eliminate Tuning, And Reduces Cost



### **Antenna Assembly**



### **IMPROVEMENTS FOR MOD 1**

#### Performance:

Dielectric improvement ESD protection improvement

### Cycle Time:

Simplified assembly

#### Yield:

Automation increases yield Cp better on target Cpk increase

#### Cost:

Component cost reduction

#### MOD-1

Simplified geometry Improved quality process & controls Standard coax cable connectors Consistent & repeatable performance Excellent, proven dielectric control Improved design margin on: **Return** loss Isolation 2-way gain Autoclave bond film. Survived extensive ATK air gun shock tests Rail gun test successful.

#### Antenna Assembly Updates Eliminate Tuning, Simplify Assembly, And Reduces Cost



## **MMIC Receiver**



MOD1 Receiver successfully designed, repackaged, built, and tested
 Increased LO drive range helps eliminate expensive unit tuning
 Successfully integrated and tested Receiver MMIC



### **IMPROVEMENTS FOR MOD 1**

Performance:
 ESD protection improvement
 Design margin improvement

• Cycle Time: Eliminate unit to unit tuning

#### • Yield: Cp better on target Cpk increase

#### Cost:

Reduced chip size



Significantly Improved Design Margin Helps Eliminate Unit Tuning And Reduces Cost



## **MMIC Transmitter**



#### PIP planned two Transmitter MMIC design iterations

#### 1<sup>st</sup> Design Iteration

- Vendor modeling error resulted in faulty ESD cells
- Vendor fused cells open, resulting in spec compliant MMICs
- Successful integration testing

#### 2<sup>nd</sup> Design Iteration

- ✓ Updated design for ESD cell
  - Updated core design to re-center frequency & increase output power (yield improvements)
- Modulation Port Sensitivity Pulling reduced range and opened specification. Reduced resistor binning.

### **IMPROVEMENTS FOR MOD 1**

- Performance:
   ESD protection improvement
- Cycle Time: Eliminate unit to unit tuning
- Yield: Cp better on target Cpk increase
- Cost: Reduced chip size



#### Reduced Unit-to-Unit Variation Helps Eliminate Unit Tuning And Reduces Cost





## **Controller Circuit Card Assembly**



### **IMPROVEMENTS FOR MOD 1**

Performance:
 Reduced power consumption

 Cycle Time: Reduced soldering Standard reflow

#### Yield:

Automation increases yield Cp better on target Cpk increase

 Cost: Reduced chip size Integrate PWBs



#### Controller Assembly Updates Simplify Assembly, Eliminate Tuning, And Reduces Cost

# Fuze Housing And Battery Assembly



# IMPROVEMENTS FOR MOD 1 Performance: Improved battery Cycle Time: Integrated fuze housing Yield: Reduced steps increases yield

 Cost: Reduced chip size Integrate PWBs



#### Fuze & Battery Assembly Design Updates Simplify Assembly And Reduces Cost



# Detonator Assembly, S&A, And Booster





### **IMPROVEMENTS FOR MOD 1**

Performance:
 Improved detonator

• Cycle Time: Easy Detonator Assembly

• Yield: Reduced steps increases yield

• Cost: N/A

| MOD-1                                                      |  |  |
|------------------------------------------------------------|--|--|
| ✓ M100                                                     |  |  |
| <ul> <li>Detonator test points accessible</li> </ul>       |  |  |
| <ul> <li>Simple assembly done outside of fuze</li> </ul>   |  |  |
| <ul> <li>Redundant positive and ground contacts</li> </ul> |  |  |
| ✓ Unchanged from MOD-0                                     |  |  |
| ✓ Unchanged from MOD-0                                     |  |  |

#### Detonator Assembly Simplifies Assembly And Reduces Cycle Time







- MOD0 MK44 Lead Acid Reserve Energizer is obsolete
- Previous MFF studies identified and tested a replacement battery:

### Lithium-SOCL2 Reserve Battery

### **IMPROVEMENTS FOR MOD 1**

• Performance: Improved rise time

• Cycle Time: N/A

• Yield: N/A

• Cost: Battery cost reduced



### **PIP Design Results**

- Batteries Procured
- Simplified Assembly
- Battery Tests Verify Battery Exceeds Goal
- Battery Tests Verify Rise Time Exceeds Threshold
- Simulation & Lab Tests Verify Functionality

#### Battery Characteristics Exceed Fuze Requirements and Reduces Cost



## Summary



### ✓ PERFORMANCE:

- Going forward for HSMSTs
- New hardware has improved tolerance

### **CYCLE TIME:**

- 72 parts for Mod 0 compared to 40 parts for Mod 1
- Mod 1 Cycle Time is reduced by 65%

### ✓ YIELD:

- Less steps for Mod 1 than Mod 0, less manipulation error
- Automation means better Cp and increased Cpk (better yield)

### 

- Electrical component cost less due to Moore's Law
- Moore's Law: in 10 years same component price drops by 100x

#### Acknowledgements:

Mr. James Ring – ATK Technical Lead Mr. Marty Davis – ATK Program Manager



MOD-1 Design Updates Successfully Meets Performance, Cycle Time, Yield, and Cost