Integrated Defense Acquisition, Technology, and Logistics Life Cycle Management System

Following the National Development Decision, the Mission Decision Authority may authorize entry into the acquisition process at any point, consistent with phase-specific entrance criteria and system requirements.

Joint Capabilities Integration & Development System

Oversight & Review

Contracting

Major Products

Logistics/Sustainment

Defense Acquisition System

Funding

Planning, Programming, Budgeting & Execution Process

5 - 20 Years
Acquisition Marine Style

Do I need to kill something?

- Yes
 - Pick 1, maybe 2 of 3
 - Yes, You do!
 - Go Kill something
 - Hurry Up - - go!

- No
 - Go Kill something
Functions of Marine Aviation

- Offensive Air Support
- Anti-Air Warfare
- Assault Support
- Air Reconnaissance
- Electronic Warfare
- Control of Aircraft and Missiles
Acquisition for Maneuver Warfare

- Maneuver Warfare
 - Flexibility
 - Speed/Tempo
 - Surprise/Initiative

- How do we maintain a technological advantage and the appropriate capacity to meet the challenges across the ROMO, in an increasingly volatile world, and still have a treasury?

- Challenge - How to acquire cost effective systems to enhance Expeditionary Maneuver Warfare.
 - Adaptive
 - Lack of speed in acquisition breeds requirements creep
 - Moore’s law vs the “good idea cutoff date”
Threats / Views

- State and Non-state
- Terrorism / Criminals / Insurgents / industrial espionage
- Hybrid
- Declining power? Reluctance to engage?
- Deterrence?
- Increased frequency for volatility and instability
- Distributed ops – re-aggregation
- Multi-domain – air, sea, land, cyber, space

Upon what strategy and assumptions do you base long term acquisitions when making decisions for the next 30-50 years?
DOD Budget Context

Historic drawdown average 30%
Procurement takes disproportionate hits

Historical Ave = $460B

Currently 8-11% down this slope with POM13 - $3.93B.
DON Aviation Budget Context
PB-12 30 Year Aircraft Investment Plan

DoN Fixed and Rotary Wing by TMS (APN 1-4 & RDT&E)
Marine Aviation Transition Strategy

Today

- KC-130 F/R/T
- CH-46E
- UH-1N AH-1W
- F/A-18 A+ F/A-18 C F/A-18 D AV-8B EA-6B
- CH-53E
- ISR Services RQ-7B
- VH-3 VH-60

End State

- KC-130J
- MV-22
- UH-1Y AH-1Z
- F-35B
- CH-53K
- RQ-21A Group 4
- TBD
- VXX

Transitions in progress
MWSS

Expeditionary Operations
- MWSS is the critical enabler to ACE operations
- Tactical and Strategic Agility
- Realignment of MWSS under MAG

EAF 2000 Reconstitution
- AM-2 Retrograde and Refit
 (6 million sq ft installed ISO OEF)
- Next Generation Airfield Lighting/Matting
F-35B JSF Update

Control of Aircraft and Missiles
Anti-Air Warfare
Assault Support
Aerial Reconnaissance
Offensive Air Support
Electronic Warfare
Since the FY11 Marine Aviation Plan

• 11th deployment:
 o 3 x OIF, 4 x MEU, 4 x OEF

• Enhanced Capabilities:
 o Expanded Battlespace Maneuver
 o Complicates the Enemy’s defense
 o Increases Stand-off basing

MV-22B Osprey

POR: 360 aircraft
AC: 16 X 12 aircraft
RC: 2 X 12 aircraft

Squadrons: 16 active, 2 reserve
“Turns Texas into Rhode Island.”
– BGen Alles, CG ACE MNF-W
MV-22 MISSION SNAPSHOT

Operation Odyssey Dawn

26 MEU MV-22’s prepare to launch from USS Kearsarge

HQMC cleared for public release
Aerial Refuel

ALI AL SALEM
Arrive: 0750Z, DEP: 0910Z
Refueling stop required for KC-130s.

SIGONELLA
6xMV-22 ARR (9 Apr): 1520Z
2+20 Flight Time/480nm

SOUEDA BAY
Arrive: 1605Z
13+05 Flight Time/2952nm

BASTION
Depart with 2 KC-130s at 0130Z

3 MVs moved on 3 April; 3 MVs moved on 6 April. Limiting factor was tanker availability.

Afghanistan Retrograde

6 x MV-22’s, 3 continents, 10 countries, 3432 NM
25 Marines, 15000 lbs of cargo, 15+25 hrs
KC-130J

- Active FOC by 31 Dec 2011
- Reserve transition ~ FY15-26
- Enhanced Capabilities:
 - More efficient aerial delivery
 - Twice the delivery rate for Rapid Ground Refueling (RGR) ops
 - 21% increase in speed
 - Shorter Take-off distances
 - Common engine to the MV-22
 - Integrated ASE

POR: 79 aircraft
 - AC: 3 X 15 aircraft
 - RC: 2 X 12 aircraft

Squadrons: 3 active, 2 reserve

Enables All Six
- Control of Aircraft and Missiles
- Anti-Air Warfare
- Assault Support
- Aerial Reconnaissance
- Offensive Air Support
- Electronic Warfare
KC-130J Harvest HAWK

• Persistent ISR and attack capability conducted from KC-130 J
 o Preserves refueling capability from RH AAR Pod.

• System Components
 o AN/AAQ-30 Targeting Sight System (TSS)
 o RO/RO fire control station on modified pallet
 o AGM-114P Hellfire II in place of left AAR pod
 o Griffin Stand Off Precision Guided Munitions
 o Video Downlink to Rover

CURRENT FORCE:
1 AC VMGR SQDN x 2 MISSION KIT
1 AC VMGR SQDN x 1 MISSION KIT

FORCE GOAL:
2 AC VMGR SQDN x 3 MISSION KITS

One kit deployed since Oct 2010 - Identified 8 confirmed and multiple suspected IEDs
Employed 74 Hellfire & 13 Griffin - Feedback from supported units is outstanding
Harvest Hawk
H-1 Program

- AH-1Z IOC (February 2011)
 - 84% commonality between Y/Z
 - Reduction in logistics/training requirements
- To date:
 - ~48 Yankees / ~19 Zulus delivered
- Enhanced Capabilities:
 - Yankee
 - Double the range and payload
 - 170 kts versus 130 kt Vne
 - 8 Fully loaded Marines
 - Digitally integrated cockpit
 - Zulu
 - Improved Sensors – Max range Weapons employment
 - Double the Range

POR: 349 aircraft (160 Y, 189 Z)
 AC: 8 X 15Z / 12Y aircraft
 RC: 1 X 15Z / 12Y aircraft

Squadrons: 8 active, 1 reserve
UAS Family of Systems

- RQ-7B Weaponization approved
- RQ-21 Small Tactical UAS (STUAS) early operational capability
 - Fielded starting in Sep 11
- Planned Cargo UAS deployment to OEF
 - Nov 11
- VMU-3 moving to 1st MAW
Ground/Air Task Oriented Radar (G/ATOR) Transition

• G/ATOR: A MAGTF Weapon System
 o Incr I: Air Defense/Surveillance Radar
 o Incr II: Ground Weapon Locating Radar
 o Incr IV: Air Traffic Control

• Both Engineering Development Models (EDMs) are meeting integration and testing expectations
 o G/ATOR Incr. 1 EDM’s are detecting and tracking air traffic at BWI.

G/ATOR replaces 5 legacy radars: TPS-63, TPS-73, TPQ-46
UPS-3 and MPQ-62

• Program is on schedule
• Program is resourced in PB 12

• AAO:
 ACE Qty 31 (Incr I & IV)
 GCE Qty 38 (Incr II)
 Total 69
Capability Drivers

• Decrease the Size and weight
 o Lighten the MAGTF OPT ongoing
 o 2010 MEU ACE ~ 520 K; 2020 MEU ACE ~ 800 K

• Increase the speed
 o Sensor to shooter and Kill Chain information
 ▪ FMV, VMF, Digital Interoperability

• Increased efficiency
 o Fuel, Batteries, O&M costs
Acquisition Challenges

• **Defining requirements:**
 - What is the problem we are trying to solve?
 - Tension between clarity / industry creativity / contract legality / length of need
 - What capacity?

• **Contracting:**
 - Takes too long
 - UAS contract in work for 2.5 years

• **Multiple transitions simultaneously**
 - USMC / DoD transitions

• **Sustainment and Relevance**
 - Sustainment for the new & Legacy platforms
 - Mod / upgrade costs
Acquisition for 2025 and beyond

- Must Avoid a single view of warfare
 - The only thing certain is uncertainty
 - Surprise will be the dominant factor
- Hybrid Warfare – Train and equip for ROMO
- Cost imposing strategies
 - How do we make war too expensive (at least more expensive) for the enemy?
- Time to train & Dwell vs multi-mission platforms
 - Readiness
 - Service life
 - Simulation
- Expeditionary subsystems - Integrated Capabilities
 - Maintenance, sustainment, training, weapons, security, interoperability
 - LHA (R) – FUEL, Maint space, C2 options
Questions