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Projects Using DOE at U.S. Army ECBC CY05-08

Á JPM Nuclear Biological Chemical Contamination Avoidance (NBCCA) - Whole Systems Live 
Agent Test (WSLAT) Team support to the Joint Biological Point Detection System (JBPDS)

Á Agent Fate wind tunnel experiments

Á Decontamination Sciences Team

Å Contact Hazard Residual Hazard Efficacy Agent T&E Integrated Variable Environment 
(CREATIVE)  - real and simulation data

ÅModified vaporous hydrogen peroxide (mVHP) decontamination ïreal data

Á Smoke and Target Defeat Team

Å Pepper spray characterization ïreal data

Å Obscurant material evaluation (with OptiMetrics, Inc.) ïsimulation data

Á U.S. Army Independent Laboratory In-house Research (ILIR) on novel experimental designs 
used with simulations

Å Re-analysis of U.S. Air Force Kunsan Focused Effort BWA simulation data

Å CB Sim Suite used for sensitivity analysis of atmospheric stability

Á U.S. Marine Corps Expeditionary Biological Detection (EBD) Advanced Technology 
Demonstration (ATD)

Å Chamber testing of detectors ïreal data

Å CB Sim Suite sensor deployment studies ïsimulation data

Á U.S. Navy lead on Joint Expeditionary Collective Protection (JECP)

Å Swatch and chamber testing ïreal data

Å Computational Fluid Dynamics (CFD) ïsimulation data
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Evaluate potential use of sequential Nested Latin 
Hypercube Designs (NLHD) with long-running 
Computational Fluid Dynamics (CFD) simulations

In lieu of CFD model a transcendental function known to 
exhibit ñrapid changeò in corners of 2-factor space was used 
to stress extrapolation of Gaussian Process metamodel.

īAccuracy evaluated by comparing Actual vs. Predicted (i.e. 
simulation vs. metamodel) checkpoint response values

īThree sets of checkpoints over different ranges were used

īRelative sizes of regions of extrapolation at each 
succeeding stage ïwith & w/o inclusion of checkpoints ï
compared by looking at slices through convex hull

īAugmentation of first block of NLHD with moderate order 
polynomial evaluated as alternate strategy

3

Goal



Copyright © 2008, SAS Institute Inc. All rights reserved.

What is a metamodel?

ÁA metamodelis a ñmodel of a modelò 

ÅAlso called a surrogate model, it can be a fast 

approximation of a longer running simulation

īMetamodel is less accurate ïthe tradeoff to be evaluated is 
the gain in speed versus the loss in accuracy

īMetamodel is generally valid over smaller volume of factor-
space than the full computer simulation model ïinvariably it 
is better for interpolation than it is for extrapolation

4

Why would I want to create a metamodel?

ÁSome computer simulations take a long time to run

Å This makes it difficult to extract useful information about 

factor sensitivity or to be used by an operational test 

analyst seeking quick answers to ñwhat if?ò questions



Copyright © 2008, SAS Institute Inc. All rights reserved.

Some Long Running Simulations

Detailed Physics Models can require a great deal of runtime 

to generate a short period of simulation time.

Computational Fluid Dynamics (CFD) Models Lagrangian-Particle

Developed for Interior

Moving Man in Simulation

8M cells

10 Seconds of Simulation

50 CPUs ï4K slower

12 Hours of Runtime

Detailed Ingress/Egress, 

Internal Airflow and 

Convection

Developed for Exterior

Stationary Grids

1.5M Cells

30 Seconds of Simulation

Single CPU ï20K slower

7 Days of Runtime

External CW Deposition/ 

Evaporation, Vegetation, 

Solar Heating

Developed for Exterior

Stationary Grids

TBD Cells

Min-Hours of Simulation

Single CPU

Minutes-Days of Runtime

Speed, Flexibility, More User 

Friendly, V&V
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What is a Design of Experiments (DOE)?

ÁItôs the specific collection of trials run to support a 

proposed model.

ÅIf proposed model is simple, e.g. just 1st order or main effects, the 

design is called a screening DOE

īGoals include rank factor importance or find a ñwinnerò quickly

īOften used with many (> 6?) factors at start of process 

characterization

ÅIf the proposed model is more complex and includes 2nd order 

effects - particularly if the control variables are continuous and the 

model includes interaction and squared terms, the design is 

called a response-surface DOE

īGoal is generally to develop a predictive model of the process

īOften used with a few (< 6?) factors after a screening DOE
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Fit requires 

data from all 

3 blocks

Can fit data 

from blocks 

1, 2 or3

Fit requires 

data from 

blocks 1 & 2

Lack-of-fitLack-of-fit

Block 3Block 1 Block 2

x1

x3 x3x3

x1x1

Response Surface
DOE in a Nutshell

7



Copyright © 2008, SAS Institute Inc. All rights reserved.

Why Use Design of Experiments
Methods with Simulation Experiments?

Quicker answers, lower costs, solve bigger problems

ÁObtain a fast surrogate metamodel of the simulation
Å Individual simulations can run for hours, days, a week!

ī Computational Fluid Dynamics (CFD)

ī Simulation runs in real-time

ÅNumbers of factors can be very large (40+)

ÅNumbers of simulations needed can be large (thousands in many cases)

ÅSimulations can be stochastic requiring many replications

Á Metamodel yields a fast approximation of the simulation

Åmore rapidly answer ñwhat if?ò questions 

Ådo sensitivity analysis of the control factors

Åoptimize multiple responses and make trade-offs

Á By running efficient subsets of all possible combinations, one can ï
for the same resources and constraints ïsolve bigger problems

Á By running sequences of designs one can be as cost effective as 
possible & run no more trials than are needed to get a useful answer
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Why is Using DOE Important?

Á ñOne thing we have known for many months is that the 
spigot of defense funding opened by 9/11 is closing.ò

Á ñIn the past, modernization programs have sought a 99 
percent solution over a period of years, rather than a 75 
percent solution over a period of weeks or months.ò

ÅTwo quotes from the January 27, 2009 submitted statement 
of Secretary of Defense Robert M. Gates to the Senate 
Armed Services Committee.

Á DOE is one of the more powerful tools we can use to 
efficiently accomplish our goals. 

ÅDOE yields the maximum information from the fewest experiments.

ÅDOE often yields an 80% solution in less than 20% of the work.
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1-D Prediction Profiles are a Way to View Higher 
Dimensionality as ñInteractive Small Multiplesò -
Here 4 Controls & 2 Responses
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Assess Uncertainty in MetamodelPredictions Even 
for a Non-Stochastic Simulation with No Replications

For non-stochastic simulations for which a metamodel has 

been created, Monte Carlo simulations can be run using 

assumed distributions for inputs to better assess transmitted 

variation about the model point estimate.
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1-D Prediction Profiles are a Way to View Higher 
Dimensionality as ñInteractive Small Multiplesò -
Here 4 Controls & 2 Responses

1-D 

profiler 

plots
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Interaction Profiles are Another Way to 
View Higher Dimensionality -
Here 4 Controls and 1 Response
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Two Classes of Designs for 
Two Types of Metamodelingof Simulations

Á ñTraditional factorial/response surfaceò designs for polynomial modeling 

with categorical (qualitative) and continuous (quantitative) variables

ÅDesigns can be sequentially constructed to support increasingly complex models

ÅWhitepaper example reanalyzes a simulation case matrix in which all 648 = 

6X3X3X3X2X2 combinations of 6 variable settings were originally run

ÅReferences on Resolution V, Fractional-Factorial Designs for many (40+) factors 

ī Mee, R. W. (2004), Efficient Two-Level Designs for Estimating Main Effects and Two-

Factor Interactions, Journal of Quality Technology, 36, 400-412.

ī Sanchez, S.M. and Sanchez, P.J. (2005), Very Large Fractional Factorial and Central 

Composite Designs, ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4, 

October 2005, Pages 362ï377.

ī Xu, H. (2009), Algorithmic Construction of Efficient Fractional Factorial Designs with 

Large Run Sizes, Technometrics, (in press) http://www.stat.ucla.edu/~hqxu/pub/ffd2r3.pdf

Á ñSpace-fillingò designs primarily for use with continuous variables AND 

non-stochastic/deterministic responses

ÅThese designs can support ñGaussian Processò or ñKrigingò spatial regression analysis 

ïan interpolation technique, as well as linear regression ïan approximation method

15
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How are Space-Filling Designs
Different from Traditional Designs?
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Rather than emphasizing high leverage trials (ñcornersò) for a simple polynomial 

model, space-filling designs ñspreadò their trials more uniformly through the 

space to better capture the local complexities of the simulation model.
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29 CFD Simulations Run ï17 Used to 
Metamodel & 12 Used as Checkpoints

17-trial Orthogonal Latin 

Hypercube (OLH) space-

filling design settings 

used for creating the 

metamodel

12-trial Plackett-Burman 

screening design settings 

used as checkpoints ï

half just inside and half 

just outside design 

boundary (convex hull)

Trial
Time of 

Day
Temperature

Wind 

Speed

Wind 

Direction

Relative 

Humidity

Cloud 

Cover

1 505 37 5.3 247.5 30 0.92

2 165 13 5.6 281.25 10 0.32

3 250 19 1.7 225 60 0.8

4 335 25 2.9 360 55 0.14

5 1100 35 3.5 202.5 35 0.02

6 1440 15 3.2 326.25 15 0.74

7 930 11 6.2 236.25 80 0.44

8 845 33 5 348.75 75 0.62

9 760 21 3.8 270 50 0.5

10 1015 5 2.3 292.5 70 0.08

11 1355 29 2 258.75 90 0.68

12 1270 23 5.9 315 40 0.2

13 1185 17 4.7 180 45 0.86

14 420 7 4.1 337.5 65 0.98

15 80 27 4.4 213.75 85 0.26

16 590 31 1.4 303.75 20 0.56

17 675 9 2.6 191.25 25 0.38

18 972.5 26 3.05 298.125 62.5 0.65  Inside

19 547.5 16 4.55 241.875 62.5 0.65  Outside

20 972.5 26 3.05 241.875 37.5 0.65  Outside

21 547.5 26 4.55 298.125 37.5 0.35  Outside

22 972.5 16 4.55 298.125 62.5 0.35  Inside

23 547.5 16 3.05 241.875 37.5 0.35  Inside

24 547.5 26 4.55 241.875 62.5 0.65  Outside

25 972.5 16 4.55 298.125 37.5 0.65  Inside

26 547.5 26 3.05 298.125 62.5 0.35  Inside

27 547.5 16 3.05 298.125 37.5 0.65  Outside

28 972.5 16 3.05 241.875 62.5 0.35  Outside

29 972.5 26 4.55 241.875 37.5 0.35  Inside

- Min

- Max

- Mid
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Kriging Fit in 1-D Showing Interpolation
and Confidence Intervals on Prediction

18

y

x



Copyright © 2008, SAS Institute Inc. All rights reserved.
19

Seminal Paper on ñSpace-Fillingò 
DOE for Computer Experiments

ÁDesign and Analysis of Computer Experiments
Sacks, J., Welch, W.J., Mitchell, T.J. and 
Wynn, H.P. 
Statistical Science 4. 409-423, 1989

ÅTextbooks on this topic include:

īSantner, T. J., Williams, B. J., and Notz, W. I. (2003),
The Design and Analysis of Computer Experiments,
Springer, New York

īFang, K. T., Li, R. Z., and Sudjianto, A. (2005), Design
and Modeling for Computer Experiments, Chapman &
Hall/CRC Press, New York

īKleijnen, J. P. C. (2008), DASE: design and analysis of
simulation experiments. Springer, New York.
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Software Tools for Kriging Analysis
(that I know abouté)

Á JMP® (called Gaussian Process modeling)

Á ECHIP® (called Smoothing analysis)

Á SYSTAT® (called Kriging analysis)

Á Matlab® Toolbox Modules

ÅDesign and Analysis of Computer Experiments (DACE)

ÅSUrrogate MOdeling (SUMO)

īContains DACE as well as another Kriging tool and many other 
surrogate modeling methods

Á PErK (code available from authors of 2003 text by Santner, et. al.)

Á ñBlindò Kriging ïR code potentially available from GA Tech

Á The Gaussian Processes Website: http://www.gaussianprocess.org

Á Code to do Bayesian Hierarchical Gaussian Process (BHGP) modeling 
by combining simulation and real experimental data is available from 
Prof. Peter Qian of the University of Wisconsin
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Websites for Designs, Software & Publications

Á http://harvest.nps.edu/

The Simulation Experiments & Efficient Design (SEED) Center 

for Data Farming at Naval Postgraduate School

ÅDesigns 

īNearly Orthogonal Latin Hypercubes (NOLH) and

īResolution V, Fractional Factorials for many factors

ÅAgent-Based Simulation Software 

īPythagoras 

īMANA (Map Aware Non-uniform Automata)

ÅMany Papers for Download and Links to INFORMS and WSC

Á http://www.research.att.com/~njas/oadir/index.html

Library of Orthogonal Arrays maintained by Neil J.A. Sloane

Á http://support.sas.com/techsup/technote/ts723.html

Library of Orthogonal Arrays maintained by Warren F. Kuhfield
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Publications Discussing Recent Advances
in MetamodelingSimulations

Á Blind Kriging: A New Method for Developing Metamodels,

Joseph, V.R., Hung, Y., and Sudjianto, A., 

ASME Journal of Mechanical Design, 130, 031102-1-8, 2008 

Á Gaussian Process Models for Computer Experiments 

With Qualitative and Quantitative Factors,

Qian, P.Z.G., Wu, H., and Wu, C.F.J., 

Technometrics, 50 (4), 383-396, 2008

Á Bayesian Hierarchical Modeling for Integrating Low-Accuracy 

and High-Accuracy Experiments,

Qian, P. Z. G. and Wu, C. F. J.,

Technometrics, 50 (2), 192-204, 2008

Á Regression-Based Inverse Distance Weighting for Multivariate

Interpolation,

Joseph, V.R.,  and Kang, L.,

(submitted) Preprint May 2009

Á Nested Latin Hypecube Designs,

Qian, P. Z. G.

Biometrika (to appear) Preprint September 2008
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Why Is a Sequential Approach So Useful?

23

We wanted to run the fewest simulations that would allow us to extract 

useful information about the simulated process. We wanted to not just 

do sensitivity analysis of the factors, but provide an interactive 

surrogate model of the long-running simulation so that analysts could 

evaluate ñwhat if?ò scenarios.  

The problem was that the Computational Fluid Dynamics models we 

were looking to run could take a week on a single CPU or 12 hours on 

50 CPU cluster.  With on the order of 10 factors we expected to need to 

run on the order of 100 simulations.  This meant it could be weeks or 

months before we could start our analysis.  

Nested Latin Hypercube Designs gave us a way to start analyzing 

data after about the first 20% of the simulations were run.  We also 

wanted to be able to run just enough simulations to achieve a surrogate 

model accuracy of 90%.  We measured the accuracy using checkpoints 

and report the % Off Target for individual points as well as the RMS of 

the group and visualize the error using plots of Actual (from simulation) 

vs. Predicted (from surrogate model) values.
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Projections of Trial Locations in 2 factors for a 10-factor, 128-trial, 

Nested Latin Hypercube Design* (NLHD) with 4 Blocks
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24*Generated with Matlab Code Received from Prof. Peter Qian of U of Wi.



Copyright © 2008, SAS Institute Inc. All rights reserved.

Projections of Trial Locations in 3 factors for a 10-factor. 128-trial, 

Nested Latin Hypercube Design (NLHD) in 4 Blocks

Blocks 1 & 2, 32 trials Blocks 1, 2, 3 & 4, 128 trials
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