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Projects Using DOE at U.S. Army ECBG8CYC

A JPM Nuclear Biological Chemical Contamination Avoidance (NBCCA) - Whole Systems Live
Agent Test (WSLAT) Team support to the Joint Biological Point Detection System (JBPDS)

A Agent Fate wind tunnel experiments
A Decontamination Sciences Team

A Contact Hazard Residual Hazard Efficacy Agent T&E Integrated Variable Environment
(CREATIVE) - real and simulation data

A Modified vaporous hydrogen peroxide (mVHP) decontamination i real data
A Smoke and Target Defeat Team

A Pepper spray characterization i real data

A Obscurant material evaluation (with OptiMetrics, Inc.) T simulation data

A U.S. Army Independent Laboratory In-house Research (ILIR) on novel experimental designs
used with simulations

A Re-analysis of U.S. Air Force Kunsan Focused Effort BWA simulation data
A CB Sim Suite used for sensitivity analysis of atmospheric stability

A U.S. Marine Corps Expeditionary Biological Detection (EBD) Advanced Technology
Demonstration (ATD)

A Chamber testing of detectors i real data
A CB Sim Suite sensor deployment studies i simulation data
A U.S. Navy lead on Joint Expeditionary Collective Protection (JECP)
A Swatch and chamber testing i real data
A Computational Fluid Dynamics (CFD) i simulation data



Evaluate potential use of sequential Nested Latin
Hypercube Designs (NLHD) with long-running
Computational Fluid Dynamics (CFD) simulations

In lieu of CFD model a transcendental function known to
exhi bit nArapi d c hfactorgmmee wasmnused o r
to stress extrapolation of Gaussian Process metamodel.

I Accuracy evaluated by comparing Actual vs. Predicted (i.e.
simulation vs. metamodel) checkpoint response values

Three sets of checkpoints over different ranges were used

Relative sizes of regions of extrapolation at each
succeeding stage T with & w/o inclusion of checkpoints 1
compared by looking at slices through convex hull

I Augmentation of first block of NLHD with moderate order
polynomial evaluated as alternate strategy



What Is a metamodel?

A Ametamodeli s a fAmodel of a m

A Also called a surrogate model, it can be a fast
approximation of a longer running simulation

T Metamodel is less accurate i the tradeoff to be evaluated is
the gain in speed versus the loss in accuracy

T Metamodel is generally valid over smaller volume of factor-
space than the full computer simulation model 7 invariably it
IS better for interpolation than it is for extrapolation

Why would | want to createt@mmodel

A Some computer simulations take a long time to run

A This makes it difficult to extract useful information about
factor sensitivity or to be used by an operational test 4
analystseeki ng quick answers to



Detailed Physics Models can require a great deal of runtime
to generate a short period of simulation time.

Developed for Interior
Moving Man in Simulation
8M cells

10 Seconds of Simulation
50 CPUs i 4K slower

12 Hours of Runtime

Detailed Ingress/Egress,
Internal Airflow and
Convection

Developed for Exterior
Stationary Grids

1.5M Cells

30 Seconds of Simulation
Single CPU 1 20K slower
7 Days of Runtime

External CW Deposition/
Evaporation, Vegetation,
Solar Heating

Lagrangian-Particle

Developed for Exterior
Stationary Grids

TBD Cells

Min-Hours of Simulation
Single CPU
Minutes-Days of Runtime

Speed, Flexibility, More User
Friendly, V&V
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What is a Design of Experiments (DOE)?

Altodés the specific collecti
proposed model.

A If proposed model is simple, e.g. just 15t order or main effects, the
design is called a screening DOE

1T Goal s i nclude rank factor | mport

1 Often used with many (> 67?) factors at start of process
characterization

A If the proposed model is more complex and includes 2" order
effects - particularly if the control variables are continuous and the
model includes interaction and squared terms, the design is
called a response-surface DOE

1 Goal is generally to develop a predictive model of the process
1 Often used with a few (< 67?) factors after a screening DOE
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Why Use Design of Experiments

Methods with Simulation Experiments?

S —
v

Z . .
Quicker answers, lower costs, solve bigger problems

A Obtain a fast surrogate metamodel of the simulation

A Individual simulations can run for hours, days, a week!
T Computational Fluid Dynamics (CFD)
T Simulation runs in real-time

A Numbers of factors can be very large (40+)
A Numbers of simulations needed can be large (thousands in many cases)
A Simulations can be stochastic requiring many replications

A Metamodel yields a fast approximation of the simulation
Amore rapidly answer fdAwhat if?20 qu
A do sensitivity analysis of the control factors
A optimize multiple responses and make trade-offs

A By running efficient subsets of all possible combinations, one can i
for the same resources and constraints T solve bigger problems

A By running sequences of designs one can be as cost effective as

possible & run no more trials than are needed to get a useful answer
8



Why is Using DOE Important?

A nOne thing we have known for matrt
spigot of defense funding openeq

Anfnln the past, modernization pr oc¢
percent solution over a period of years, rather than a 75
percent solution over a period

A Two quotes from the January 27, 2009 submitted statement
of Secretary of Defense Robert M. Gates to the Senate
Armed Services Committee.

A DOE is one of the more powerful tools we can use to
efficiently accomplish our goals.

A DOE yields the maximum information from the fewest experiments.
A DOE often yields an 80% solution in less than 20% of the work.
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1-D Prediction Profiles are a Way to View H
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Assess Uncertaintivietamodé&lredictions Eve

for a No#tochastic Simulation with No Replic

For non-stochastic simulations for which a metamodel has
been created, Monte Carlo simulations can be run using

assumed distributions for inputs to better assess transmitted
variation about the model point estimate.
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1-D Prediction Profiles are a Way to View H
Di mensional ity as-n
Here 4 Controls & 2 Responses
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Interaction Profiles are Another Way to
View Higher Dimensionality
Here 4 Controls and 1 Response
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Two Classes of Designs for
Two Types dfetamodelird Simulations

S

AfdATraditional factorial/response s
with categorical (qualitative) and continuous (quantitative) variables

A Designs can be sequentially constructed to support increasingly complex models

A Whitepaper example reanalyzes a simulation case matrix in which all 648 =
B6X3X3X3X2X2 combinations of 6 variable settings were originally run

A References on Resolution V, Fractional-Factorial Designs for many (40+) factors

T Mee, R. W. (2004), Efficient Two-Level Designs for Estimating Main Effects and Two-
Factor Interactions, Journal of Quality Technology, 36, 400-412.

Sanchez, S.M. and Sanchez, P.J. (2005), Very Large Fractional Factorial and Central
Composite Designs, ACM Transactions on Modeling and Computer Simulation, Vol. 15, No. 4,
October 2005, Pages 362i 377.

Xu, H. (2009), Algorithmic Construction of Efficient Fractional Factorial Designs with
Large Run Sizes, Technometrics, (in press) http://www.stat.ucla.edu/~hgxu/pub/ffd2r3.pdf

A fdSpafciel |l ingo designs primarily fo
non-stochastic/deterministic responses

AThese designs can suppoKrigingh Gapasi ah Peg:!

I an interpolation technique, as well as linear regression i an approximation method
15



How are Spa¢dlling Designs
Different from Traditional Designs®?

Space-Filling Design Response-Surface Design
for 3 Variables with 17 Unique Trials for 3-Variables with 15 Unique Trials

Rat her than emphasizing high | everage
model,space-f i | | i ng designs Aspreado their t
space to better capture the local complexities of the simulation model.

16



17-trial Orthogonal Latin
Hypercube (OLH) space-
filling design settings
used for creating the
metamodel

12-trial Plackett-Burman
screening design settings
used as checkpoints i
half just inside and half
just outside design
boundary (convex hull)

29 CFD Simulations Rai Used to

Metamodel & 12 Used as Checkpoints

Time of Temperature Wind Wind Relative Cloud
Day Speed Direction Humidity  Cover

1 505 37 5.3 247.5 30 0.92
2 165 13 5.6 281.25 0.32
3 250 19 1.7 225 0.8
4 335 25 2.9 360 0.14
5 1100 35 3.5 202.5

6 1440 15 3.2 326.25

7 930 11 6.2 236.25 80 0.44
8 845 33 5 348.75 75 0.62
9 760 21 3.8 270 50 0.5
10 1015 2.3 292.5 70 0.08
11 1355 2 258.75 90 0.68
12 1270 5.9 315 40 0.2
13 1185 4.7 45 0.86
14 420 4.1 337.5 65 0.98
15 4.4 213.75 85 0.26
16 590 31 . 303.75 20 0.56
17 675 9 2.6 191.25 25 0.38
18 972.5 26 3.05 298.125 62.5 0.65
19 547.5 16 4.55 241.875 62.5 0.65
20 972.5 26 3.05 241.875 37.5 0.65
21 547.5 26 4.55 298.125 37.5 0.35
22 972.5 16 4.55 298.125 62.5 0.35
23 547.5 16 3.05 241.875 37.5 0.35
24 547.5 26 4.55 241.875 62.5 0.65
25 972.5 16 4.55 298.125 37.5 0.65
26 547.5 26 3.05 298.125 62.5 0.35
27 547.5 16 3.05 298.125 37.5 0.65
28 972.5 16 3.05 241.875 62.5 0.35
29 972.5 26 4.55 241.875 37.5 0.35

- Min

- Mid

- Max

Inside
Outside
Outside
Outside

Inside

Inside
Outside

Inside

Inside
Outside
Outside

Inside
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Kriging Fit irC1 Showing Interpolation
and Confidence Intervals on Prediction
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Semi nal P afpielr|l iomg ai S p
DOE for Computer Experiments

A Design and Analysis of Computer Experiments
Sacks, J., Welch, W.J., Mitchell, T.J. and
Wynn, H.P.

Statistical Science 4. 409-423, 1989
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A Textbooks on this topic include:

1 Santner, T. J., Williams, B. J., and Notz, W. |. (2003),
The Design and Analysis of Computer Experiments,
Springer, New York

1 Fang, K. T., Li, R. Z., and Sudjianto, A. (2005), Design
and Modeling for Computer Experiments, Chapman &
Hall/CRC Press, New York

1 Kleijnen, J. P. C. (2008), DASE: design and analysis of
simulation experiments. Springer, New York.
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Software Tools for Kriging Analysis

(that | kno about é)

e

JMP® (called Gaussian Process modeling)
ECHIP® (called Smoothing analysis)
SYSTAT® (called Kriging analysis)

Matlab® Toolbox Modules
A Design and Analysis of Computer Experiments (DACE)
A SUrrogate MOdeling (SUMO)

1 Contains DACE as well as another Kriging tool and many other
surrogate modeling methods

> v >y D

PErK (code available from authors of 2003 text by Santner, et. al.)
AnBIl i ndoi Rkode gpiemigly available from GA Tech

The Gaussian Processes Website: http://www.gaussianprocess.org

> >y >y D

Code to do Bayesian Hierarchical Gaussian Process (BHGP) modeling
by combining simulation and real experimental data is available from
Prof. Peter Qian of the University of Wisconsin

20



Websites for Designs, Software & Publication

A http://harvest.nps.edu/
The Simulation Experiments & Efficient Design (SEED) Center
for Data Farming at Naval Postgraduate School

A Designs
T Nearly Orthogonal Latin Hypercubes (NOLH) and
T Resolution V, Fractional Factorials for many factors
A Agent-Based Simulation Software
T Pythagoras
T MANA (Map Aware Non-uniform Automata)
A Many Papers for Download and Links to INFORMS and WSC

A http://www.research.att.com/~njas/oadir/index.html
Library of Orthogonal Arrays maintained by Neil J.A. Sloane

A http://support.sas.com/techsup/technote/ts723.html
Library of Orthogonal Arrays maintained by Warren F. Kuhfield
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Publications Discussing Recent Advances
InMetamodelirfgmulations

Blind Kriging: A New Method for Developing Metamodels,
Joseph, V.R., Hung, Y., and Sudjianto, A.,
ASME Journal of Mechanical Design, 130, 031102-1-8, 2008

Gaussian Process Models for Computer Experiments
With Qualitative and Quantitative Factors,
Qian, P.Z.G., Wu, H., and Wu, C.F.J.,
Technometrics, 50 (4), 383-396, 2008

Bayesian Hierarchical Modeling for Integrating Low-Accuracy
and High-Accuracy Experiments,
Qian, P. Z. G. and Wu, C. F. J.,
Technometrics, 50 (2), 192-204, 2008

Regression-Based Inverse Distance Weighting for Multivariate
Interpolation,
Joseph, V.R., and Kang, L.,
(submitted) Preprint May 2009

Nested Latin Hypecube Designs,
Qian, P. Z. G.
Biometrika (to appear) Preprint September 2008
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/ Why Is a Sequential Approach So Useful?

S

We wanted to run the fewest simulations that would allow us to extract
useful information about the simulated process. We wanted to not just
do sensitivity analysis of the factors, but provide an interactive
surrogate model of the long-running simulation so that analysts could
eval uate fAiwhat i1 f?0 scenari os.

The problem was that the Computational Fluid Dynamics models we
were looking to run could take a week on a single CPU or 12 hours on
50 CPU cluster. With on the order of 10 factors we expected to need to
run on the order of 100 simulations. This meant it could be weeks or
months before we could start our analysis.

Nested Latin Hypercube Designs gave us a way to start analyzing
data after about the first 20% of the simulations were run. We also
wanted to be able to run just enough simulations to achieve a surrogate
model accuracy of 90%. We measured the accuracy using checkpoints
and report the % Off Target for individual points as well as the RMS of
the group and visualize the error using plots of Actual (from simulation)
vs. Predicted (from surrogate model) values.

23



Projections of Trial Locations in 2 factorsfamtar,l028ial,
Nested Latin Hypercube Design* (NLHD) with 4 Blocks

Block 1, 16 trials
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Block 3, 32 trials

Block 4, 64 trials

*Generated with Matlab Code Received from Prof. Peter Qian of U of Wi.
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Projections of Trial Locations in 3 factorsfemtar1028ial,
Nested Latin Hypercube Design (NLHD) in 4 Blocks

ocks 1 & 2, 32 trials Blocks 1, 2, 3 & 4, 128 trials
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