

Australian Government

Department of Defence Defence Science and Technology Organisation

Australia's Experience in Technology Risk Assessment

Dr David Wood

Director General Materiel Science Support Defence Science and Technology Organisation Department of Defence +61-2-62652009 david.wood1@defence.gov.au

Presentation to NDIA Systems Engineering Conference 2010

Approved for public release

AUS TRA ≠ US TRA

- In the US
 - TRA = Technology Readiness Assessment
 - Not a risk assessment
 - Does not address system integration
- In Australia
 - TRA = Technical Risk Assessment
 - Is a risk assessment
 - Includes both system integration and integration of the system

Why the difference?

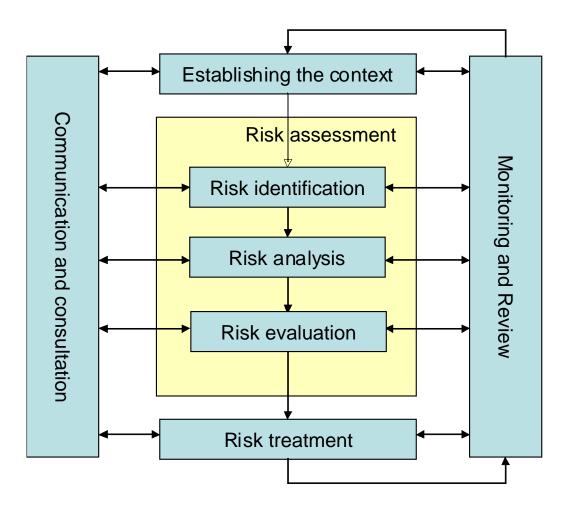
- US is the leading developer of military technology
 - So must risk manage the development of technologies
- Australia acquires most of our capabilities
 - Modifies equipment to meet our needs
 - Develops military technologies only in niche areas
 - Comes from various nations
 - Have to manage developmental options very differently from off-the-shelf

Defence Procurement Review 2003 (the Kinnaird Review)

- Defence was experiencing delays in a significant number of projects
 - Collins submarine, Sea Sprite helicopters, Jindalee over-the-horizon radar etc
- Review was commissioned to improve the acquisition of defence capabilities

Kinnaird outcomes

- Review recognised the role of complex technology development in these delays and recommended that:
 - Defence consideration of new acquisitions to include 'comprehensive analysis of technology, cost and schedule risks' and
 - Government needs to be assured that adequate scrutiny is undertaken by DSTO on technology feasibility, maturity and overall technical risk'.
- As a result, the Chief Defence Scientist (CDS) became responsible for providing independent advice to Government on technical risk for all acquisition decisions



The Capability Development Process

- Kinnaird Review also recommended the introduction of a formal two-pass process that ensures Government is well-advised in making decisions on Defence's major acquisition proposals
 - First pass sets the capability & options developed
 - Second pass seeks a decision on what option is to be acquired
- DSTO is required to provide a technical risk assessment at each pass which forms the basis for CDS to provide a technical risk certification to government

Risk management process

Risk management - Principles and guidelines, AS/NZS ISO 31000:2009

Technical Risk Assessment

- A systematic approach to identifying and assessing the technical risks for a major acquisition decision
 - Starts from risk management process
 - Draws on experience from UK Ministry of Defence and the US Department of Defence
- Aim is to inform decision-making and risk management
- Initial approach developed in 2004 and refined further with experience
 - Technical Risk Assessment Handbook currently in development

So What are *Technical* Risks?

• Two types of risk

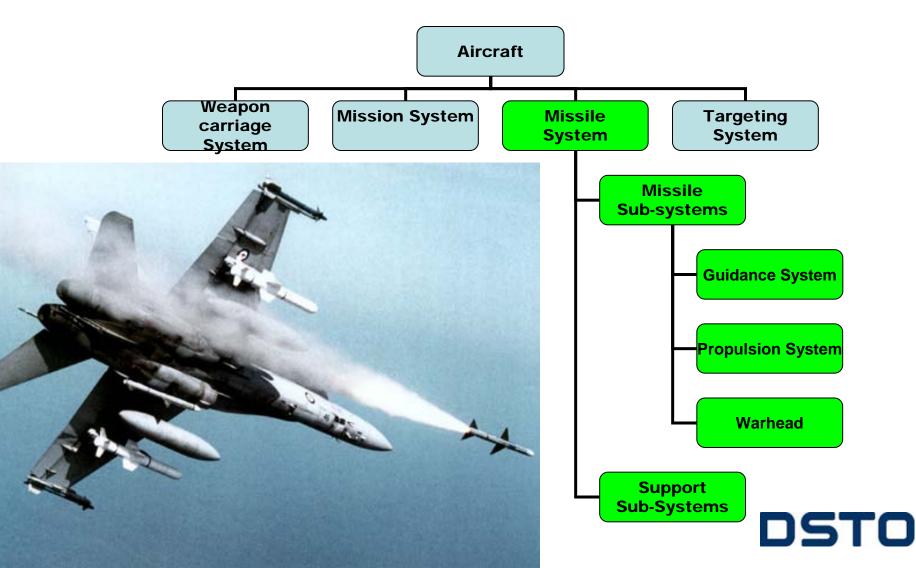
- Immature technology will not be developed in time
- And they may not be integrated into the system or Australian Defence Force

Technology risk

 the risk that the project will not achieve its objectives due to an underpinning technology not maturing in the required timeframe

Technical risk

• the risk that the project will not achieve its objectives due to risks which arise in the integration of critical technologies, and/or sub-systems dependent on them, or to the integration of the system into the ADF



How are the technical risks assessed

- Use readiness levels to assess maturity
- Assess likelihood of not maturing in time based on
 - Are the technical requirements known?
 - What are the time and resources available?
 - What is the level of difficulty in maturing the technology?
 - Is this an extension of previously developed technology or is it leading edge technology?
 - Does the system use new technology or components?
 - Is a new manufacturing process or technique involved?
 - Do the developers have expertise in this area?
- Impact on project's objectives
 - Performance
 - Cost
 - Schedule
 - Supportability
 - Safety

Project AIR1234 F/A-18 Missile

Use systems breakdown to identify technologies

For technology maturity use TRLs (From DoD TRA Deskbook)

Technology Readiness Description	Readiness Level
Basic principles of technology observed and reported.	1
Technology concept and/or application formulated.	2
Analytical and laboratory studies to validate analytical predictions.	3
Component and / or basic sub-system technology validated in a laboratory environment.	4
Component and / or basic sub-system technology validated in a relevant environment.	5
System sub-system technology model or prototype demonstration in a relevant environment.	6
System technology prototype demonstration in an operational environment.	7
System technology qualified through test and demonstration.	8
System technology qualified through successful mission operations.	9

Technology risks example

Technology	TRL	Development required	Likelihood of technology not maturing in time	Impact on project's objectives	Risk
Battery	9	Same battery proven in service on another missile			Nil
Guidance set	5	Shock resistance still to be demonstrated	UNLIKELY (10-15%)	Moderate (Could delay schedule)	Low

For technical maturity use System Readiness Levels

(adapted from TRLs by DSTO using MOD concept)

System Readiness Description	Readiness Level
Basic principles observed and reported.	1
System concept and/or application formulated.	2
Analytical studies and experimentation on system elements.	3
Sub-system components integrated in a laboratory environment.	4
System tested in a simulated environment.	5
System demonstrated in a simulated operational environment, including interaction with simulations of external systems.	6
Demonstration of system prototype in an operational environment, including interaction with external systems.	7
System proven to work in the operational environment, including integration with external systems.	8
Application of the system under operational mission conditions.	9

Technical risks example

Sub- system	Technologies in each sub- system	TRL	SRL	Integration required	Likelihood of not being integrated in time	Impact on Project's Objectives	Level of Risk
Guidance	Battery	9	5	Guidance	Less than	Moderate	MEDIUM
System	Guidance set	5		set to be	likley		
	etc			integrated			
etc							
System							
Missile Sys	stem			To be integrated with aircraft mission system	Less than likely	Major	HIGH

Summarising the Risks

Project AIR 1234 TRA Summary						
Likelihood	Consequence/Impact					
Likeimood	Minor	Moderate	Major			
More Than Likely		Seeker development	Warhead effectiveness			
Less Than Likely	Weapon integration	GPS integration				
Unlikely	Missile development					
Overall Technical Risk Level		HIGH				

Experiences

- TRAs have influenced decisions and management
- Distinguishing risks and issues
- Military/Commercial Off-the Shelf
 - Perceived as low risk
 - BUT can be technical risks in integration and in supportability
 - And can be issues if not demonstrated in mission conditions
- TRA as an input to risk management
 - Integrating TRA into project risk management and into the capability development process
- Consistency of assessment across TRAs
 - TRA Handbook being developed
- Human science risks
 - Included as a source of technical risk

Next steps

- Improving the risk assessment part
 To date have used expert judgement
- Will examine potential to use other techniques where possible
 e.g. probabilistic simulation modelling
- Formalise training in TRA
 - To cover both process and techniques

Thanks to

Mr Jim Smith, Dr Terry Moon, Dr John O'Neill, Dr Nigel McGinty, Dr Peter Dortmans, & Dr Axel Bender

Reference

Technical Risk Assessment of Australian Defence Projects (2004), J. Smith, G. Egglestone, P. Farr, T. Moon, D. Saunders, P. Shoubridge, K. Thalassoudis and T. Wallace, DSTO-TR-1656.

available from

http://dspace.dsto.defence.gov.au/dspace/bitstream/1947 /4011/1/DSTO-TR-1656%20PR.pdf

