

Introduction to NCOIC Net-Centric Patterns

Mark K Bowler Advanced Tactical Systems Phantom Works The Boeing Company 714.372.1956 mark.k.bowler@boeing.com

NIF Architecture Concepts Functional Team Chair

October 27, 2010

Approved for Public Release Distribution Unlimited NCOIC-NDIA-MB20101027

The NCOIC at a Glance

Members are Global Leaders:

Academic institutions

Air Traffic Management providers

Service providers Consulting Engineering Logistics

Defense suppliers All military services Multinational

Government agencies

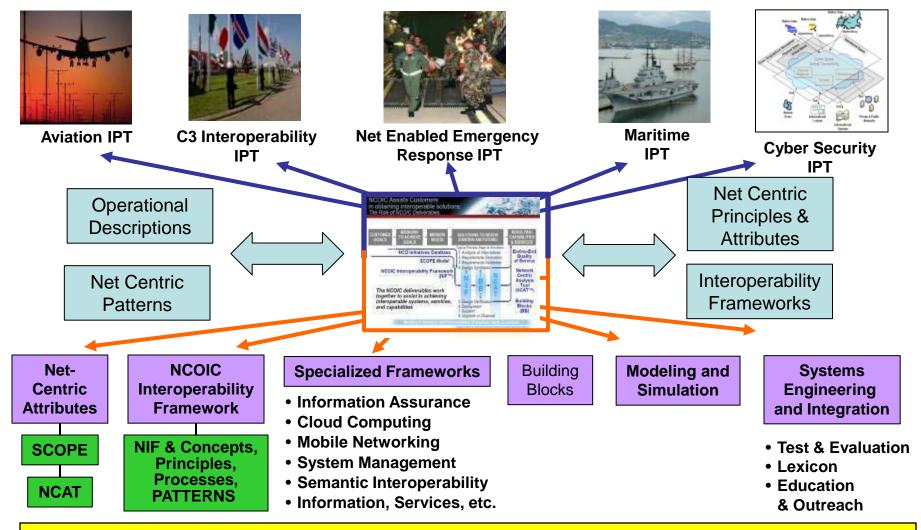
Human service agencies

Integrators Commercial systems Defense systems

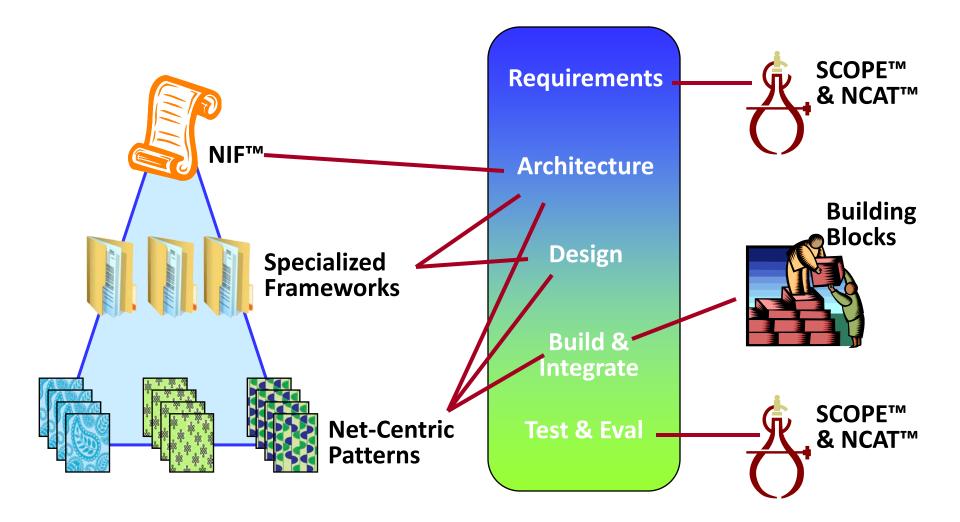
IT firms

Communications Data management Human-Machine interface Information assurance

Standards bodies


A global organization focused on an <u>industry neutral</u> <u>approach</u> to NCO adoption:

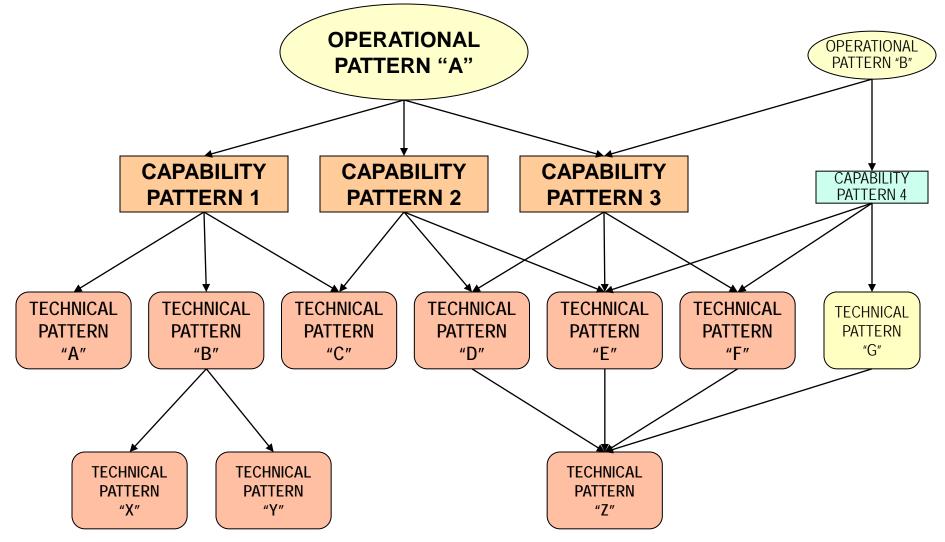
- Use of Open Standards in NCO domains
- Net-Centric Architecture Concepts and System Design Best Practices
- Tools for Evaluation and Assessment of Net-Centric Systems
- "Building Blocks" catalog of components & services compliant with NCOIC recommendations


Prescriptive Guidance On How To Build Interoperable, Network Centric Systems

Unity of Effort Different Domains, Similar Needs

Functional Teams provide the technical expertise to serve customer domains. The Integrated Project Teams provide operational information from customer domain perspectives. Page 3

Where Net-Centric Patterns fit into the NCOIC

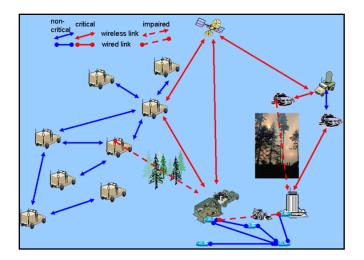


Why Patterns?

- Standards alone do not guarantee interoperability... we also need guidance on architectural approaches, behaviors, design rules, design principles, etc
- Often the "best" Standard depends on the mission and performance requirements
- In a System-of-Systems, legacy systems cannot be forced to update to newest standard
- Does Everyone Understand the Standard the Same Way?

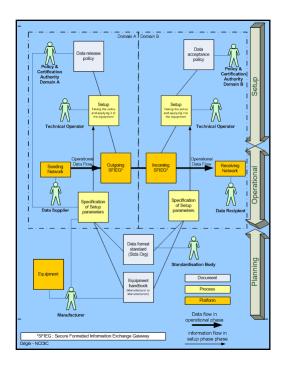
NCOIC Net-Centric Patterns \rightarrow A vehicle for prescriptive recommendations on which standards to use, how to use them, and other essential guidance

Three Types of Net-Centric Patterns



Typical use of NCOIC Resources

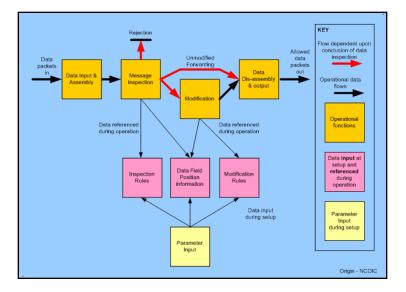
Activity	NCOIC Resource		
Concept Development	 Specialized Frameworks 		
	 Operational Patterns 		
Architecture Development	 NCOIC Interoperability Framework 		
	 Specialized Frameworks 		
	Capability Patterns		
	Network Centric Assessment Tool		
System Design	 Specialized Frameworks 		
	Technical Patterns		
	Network Centric Assessment Tool		
	 Building Block Catalog 		
System Assessments	 Network Centric Assessment Tool 		


- 1. Introduction and Problem Description
 - 1.1. Context
 - 1.2. Problem Statement
 - **1.3. Expected Benefits**
- 2. Recommended Solution
 - 2.1. Actors
 - 2.3. Interfaces
 - 2.2. Pre-Conditions
 - 2.4. Structure
 - 2.5. Behavior
 - 2.6. Post-Conditions
 - 2.7. Standards
- 3. Additional information
 - 3.1. Lessons Learned
 - 3.2. Constraints & Opportunities
 - 3.3. Known Uses
 - 3.4. Potential Capability
 - 3.5. Related Patterns
 - 3.6. References
- 4. Verification

What is the problem being solved, and the context?

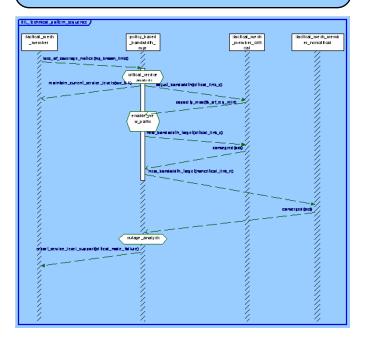
- 1. Introduction and Problem Description
 - 1.1. Context
 - 1.2. Problem Statement
 - **1.3. Expected Benefits**
- 2. Recommended Solution
 - 2.1. Actors
 - 2.3. Interfaces
 - 2.2. Pre-Conditions
 - 2.4. Structure
 - 2.5. Behavior
 - 2.6. Post-Conditions
 - 2.7. Standards
- 3. Additional information
 - 3.1. Lessons Learned
 - 3.2. Constraints & Opportunities
 - 3.3. Known Uses
 - 3.4. Potential Capability
 - 3.5. Related Patterns
 - 3.6. References
- 4. Verification

Actors and interfaces involved in the NCP or otherwise required to implement it


- 1. Introduction and Problem Description
 - 1.1. Context
 - 1.2. Problem Statement
 - **1.3. Expected Benefits**
- 2. Recommended Solution
 - 2.1. Actors
 - 2.3. Interfaces
 - 2.2. Pre-Conditions
 - 2.4. Structure
 - 2.5. Behavior
 - 2.6. Post-Conditions -
 - 2.7. Standards
- 3. Additional information
 - 3.1. Lessons Learned
 - 3.2. Constraints & Opportunities
 - 3.3. Known Uses
 - 3.4. Potential Capability
 - 3.5. Related Patterns
 - 3.6. References
- 4. Verification

Pre-Conditions are prerequisites that must be in place before the pattern can be applied. If not met, the pattern cannot be successfully applied to the problem at hand.

Post-Conditions are the concrete results of applying the pattern. State what is the outcome of applying the pattern, including any limitations and/or consequences.


- 1. Introduction and Problem Description
 - 1.1. Context
 - 1.2. Problem Statement
 - **1.3. Expected Benefits**
- 2. Recommended Solution
 - 2.1. Actors
 - 2.3. Interfaces
 - 2.2. Pre-Conditions
 - 2.4. Structure **4**
 - 2.5. Behavior
 - 2.6. Post-Conditions
 - 2.7. Standards
- 3. Additional information
 - 3.1. Lessons Learned
 - 3.2. Constraints & Opportunities
 - 3.3. Known Uses
 - 3.4. Potential Capability
 - 3.5. Related Patterns
 - 3.6. References
- 4. Verification

Graphical or textural description of any structure (architectures, etc) to be imposed on the solution

- 1. Introduction and Problem Description
 - 1.1. Context
 - 1.2. Problem Statement
 - **1.3. Expected Benefits**
- 2. Recommended Solution
 - 2.1. Actors
 - 2.3. Interfaces
 - 2.2. Pre-Conditions
 - 2.4. Structure
 - 2.5. Behavior 4
 - 2.6. Post-Conditions
 - 2.7. Standards
- 3. Additional information
 - 3.1. Lessons Learned
 - 3.2. Constraints & Opportunities
 - 3.3. Known Uses
 - 3.4. Potential Capability
 - 3.5. Related Patterns
 - 3.6. References
- 4. Verification

Required behavior (dynamic interaction) of structure elements, actors, or interfaces. Includes "rules", principles, algorithms, etc.

1. Introduction and Problem Description

- 1.1. Context
- **1.2. Problem Statement**
- **1.3. Expected Benefits**
- 2. Recommended Solution
 - 2.1. Actors
 - 2.3. Interfaces
 - 2.2. Pre-Conditions
 - 2.4. Structure
 - 2.5. Behavior
 - 2.6. Post-Conditions
 - 2.7. Standards -
- 3. Additional information
 - 3.1. Lessons Learned
 - 3.2. Constraints & Opportunities
 - 3.3. Known Uses
 - 3.4. Potential Capability
 - 3.5. Related Patterns
 - 3.6. References
- 4. Verification

Standard	Name and Number	Purpose	Notes
OSPFv2	IETF RFC 2328 (STD:54)	link state advertising on DIL links	When using IP technology
OSPF Traffic Engineering	IETF RFC 3630 Traffic Engineering (TE) Extensions to OSPF Version 2	traffic engineering to utilize DIL links	When using IP technology
IEEE 802.1D	Spanning Tree Protocol	link layer weighting of DIL links	When using COTS bridges
DAMA (MIL-STD-188-181)	181C - Interoperability Standard For Access To 5- kHz And 25-kHz Uhf Satellite Communications Channels	DAMA	When using UHF satellite communications technology
DAMA Control (MIL-STD-188- 185)	185 - Interoperability UHF Milsatcom Dama Control System	DAMA control of DIL SATCOM links	When using UHF satellite communications technology

Detailed identification of all Standards required for implementation of the NCP

- 1. Introduction and Problem Description
 - 1.1. Context
 - 1.2. Problem Statement
 - **1.3. Expected Benefits**
- 2. Recommended Solution
 - 2.1. Actors
 - 2.3. Interfaces
 - 2.2. Pre-Conditions
 - 2.4. Structure
 - 2.5. Behavior
 - 2.6. Post-Conditions
 - 2.7. Standards
- 3. Additional information -
 - 3.1. Lessons Learned
 - 3.2. Constraints & Opportunities
 - 3.3. Known Uses
 - 3.4. Potential Capability
 - 3.5. Related Patterns
 - 3.6. References
- 4. Verification

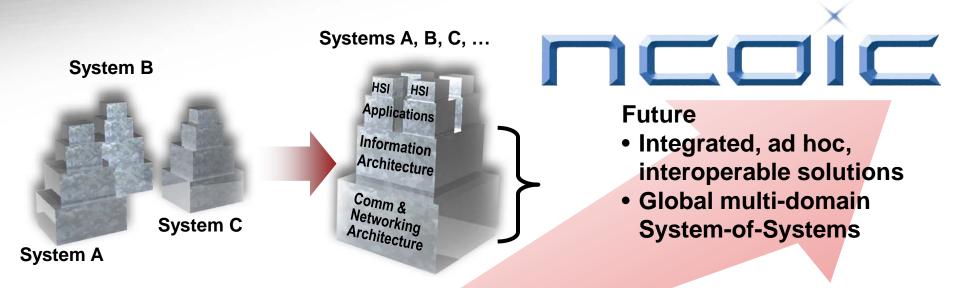
Non-Prescriptive information that may be of use to those using the NCP

- 1. Introduction and Problem Description
 - 1.1. Context
 - 1.2. Problem Statement
 - **1.3. Expected Benefits**
- 2. Recommended Solution
 - 2.1. Actors
 - 2.3. Interfaces
 - 2.2. Pre-Conditions
 - 2.4. Structure
 - 2.5. Behavior
 - 2.6. Post-Conditions
 - 2.7. Standards
- 3. Additional information
 - 3.1. Lessons Learned
 - 3.2. Constraints & Opportunities
 - 3.3. Known Uses
 - 3.4. Potential Capability
 - 3.5. Related Patterns
 - 3.6. References
- 4. Verification \leftarrow

Table of detailed verification criteria for vendors wishing to certify that their product are compliant with the NCP

NCOIC Net-Centric Patterns

RELEASED


- SAGM Mobile Communication and Networking
- Legacy Services
- Design Phase Service Integration
- Information Dissemination Shared Database
- Land Force Tracking Gateway Network Centric
- All Hazards Alerts and Warnings
- Disconnected, Intermittent, Limited (DIL) Communications Management
- Simple and Extensible Email Services (SEES)
- Secure Formatted Information Exchange Gateway (SFIEG)
- Core Network Access

COMING SOON

- Flight Data Object Dissemination
- Live, Virtual, & Constructive Integrated Middleware Environment
- Net-Centric Cyber Simulation
- Access Network Discovery
- High Level Architecture (HLA)
- Distributed Interactive Simulation
- Services Interface Technical Pattern
- Resource Tracking Information Exchange
- More in work...

Operational Patterns Capability Patterns Technical Patterns

Value for the Customer

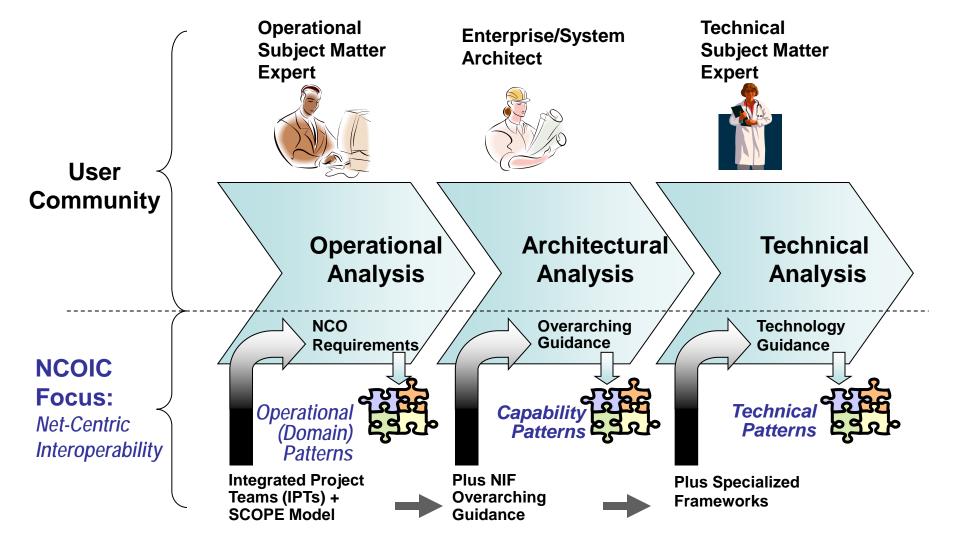
Present

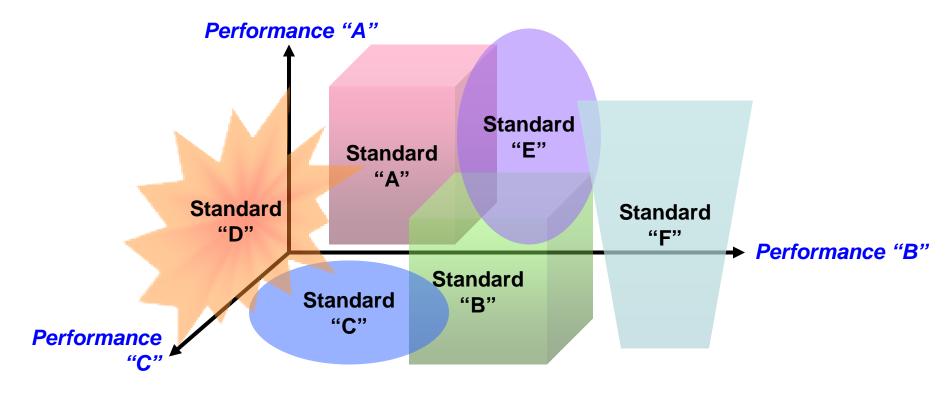
- Technology exists, but not integrated
- Some transformational programs funded
- Lack of common approach
- Industry assistance required

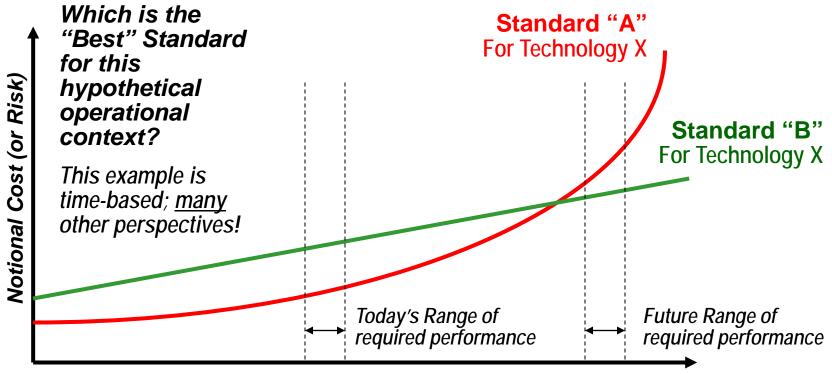
Past

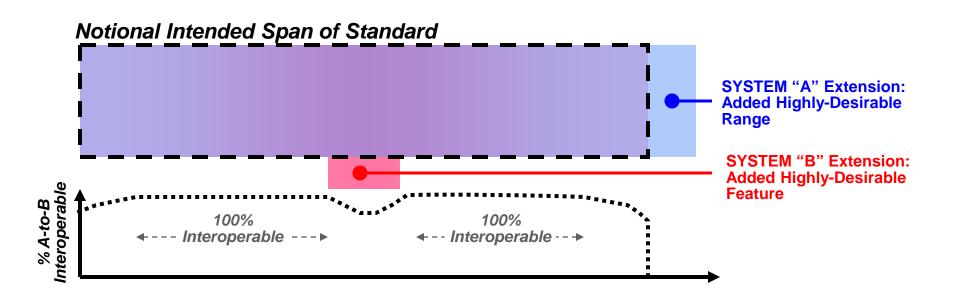
- Platform focused
- Performance driven
- Standalone

For Additional Information...

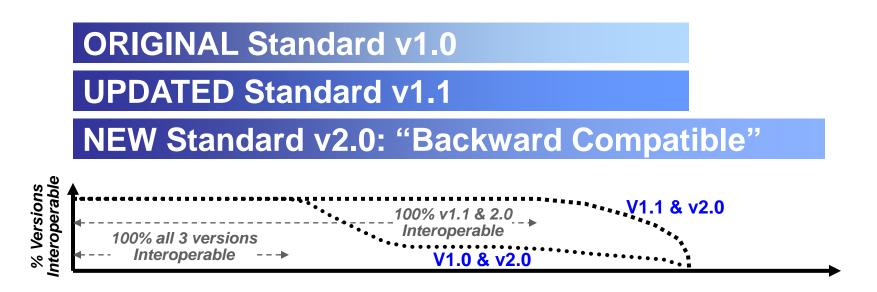

www.ncoic.org


Or Contact: mark.k.bowler@boeing.com

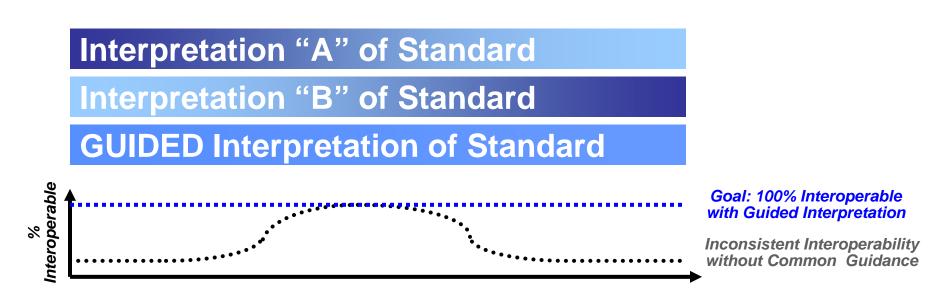

NCOIC Assists Customers in obtaining interoperable solutions: NIF Guides Development of Net-Centric Systems

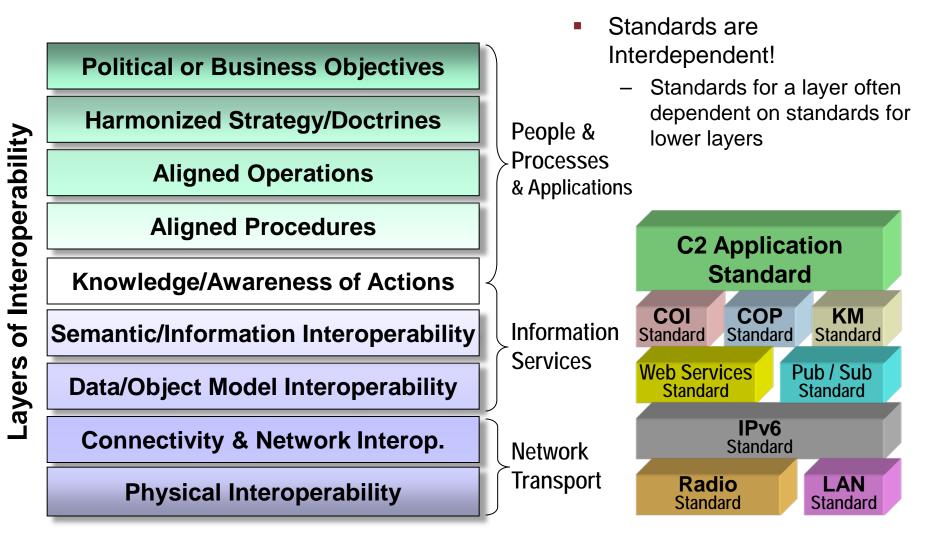

- Often the "BEST" Standard depends on the Mission
 - Real-World Condition! Often no "One Size Fits All"

 What is the appropriate level of NetCentricity for a given operational context? May impact selection of Standards!



Notional Performance


The Problem with Interoperability Standards


- "Bad" Standard, or "Bad" System Designs?
 - Real-World Condition!
 - In a System-of-Systems, cannot force systems to <u>not</u> use highlydesirable features when operating independently

- Is Everyone Running the Same Version?
 - Real-World Condition!
 - In a System-of-Systems, cannot force Legacy systems to update to newest standard

- Does Everyone Understand the Standard the Same Way?
 - Real-World Condition! (Not necessarily a bad Standard)
 - Different Languages; different Cultural backgrounds
 - Same Standard applied in different Operational Domains, implemented by designers with different levels of experience, different technical disciplines, different company rules

