

Valuing System Flexibility via Total Ownership Cost Analysis

Barry Boehm, JoAnn Lane, USC Ray Madachy, NPS

NDIA Systems Engineering Conference October 27, 2010

Research Project Context

- Flexibility Definitions and Common Cases
- Total Ownership Cost (TOC) Results to Date
 - Advantages, Challenges, Strategies
 - TOC Analysis for Foreseeable Change
 - For individual systems
 - For families of systems
 - Conclusions and Candidate Extensions
 - Refined and extended model capabilities
 - Integration with alternative valuation models

- Part of SERC Valuing Flexibility Research Task
 - For DDR&E Director of Systems Engineering Steve Welby
- Provide business cases for investing in system flexibility
 - Vs. buying more copies of less flexible systems
- Performed by multi-university team
 - Texas A&M, AFIT, NPS, USC, U. Virginia
- Using multiple analysis approaches
 - Knowledge Value Added, Option Hedging, Portfolio Analysis, Risk Analysis, Total Ownership Cost (TOC) Analysis

- Working definition of "flexibility"
 - Ability to adapt cost-effectively to sources of change
- Foreseeable sources of change
 - Within single system: encapsulate sources of change
 - Across family of systems: use commonalities and variabilities
- Unforeseeable sources of change
 - Build in analysis of change traffic, adaptability
 - Build in system margins
- Classes of change effects
 - Capabilities, interfaces, levels of service, project constraints, improvement opportunities

- TOC Advantages, Challenges, Strategies
 - Representative examples
- TOC Analysis for Foreseeable Change
 - Model and tool for individual systems
 - Calibrated to TRW software data (3 systems)
 - Exploring calibration to NPS SHIPMAIN hardware data
 - Model and tool for families of systems
 - Calibrated to COCOMO II software data (161 projects)
 - Exploring calibration to AFIT modular munitions hardware data
- Candidate Extensions
 - Refined and extended model capabilities
 - Particular domains, tradeoff analyses, enterprise analysis
 - Effects of adaptation to unforeseeable change
 - Integration with alternative valuation models

- TOC Advantages
 - Increasingly required (DoDI 5000.02, WSARA 2009)
 - Easy to understand across specialty domains
 - Clear cause-effect relationships, straightforward calibration
- TOC Challenges
 - Defining flexibility investment costs, resulting cost reductions
 - Rework and change-adaptation cost reductions a proxy for benefits
 - Predicting uncertain futures
- TOC Approach Strategies
 - Tailor analysis approaches to common situations
 - DoDI 5000.02 milestone reviews, make-or-buy decisions
 - Explicitly emphasize need to define evolution requirements
 - Not just snapshot capability, interface, KPP, project requirements

Start with simple models and tools, refine and extend as needed
 Valuing Flexibility via TOC

- Research Project Context
- Flexibility Definitions and Common Cases
- Total Ownership Cost (TOC) Results to Date
 - Advantages, Challenges, Strategies
 - TOC Analysis for Foreseeable Change
 - For individual systems
 - For families of systems
 - Conclusions and Candidate Extensions
 - Refined and extended model capabilities
 - Integration with alternative valuation models

Point-Solution Architectures Cause Major Rework Contracts: Nominal-case requirements; 90 days to PDR

Projects A and B Major Rework Sources

- Change processing over 1 person-month = 152 person-hours

Category	Project A	Project B	
Extra long messages		3404+626+443+328+244= 5045	
Network failover	2050+470+360+160= 3040		
Hardware-software interface	620+200= 820	1629+513+289+232+166= 2832	
Encryption algorithms		1247+368= 1615	
Subcontractor interface	1100+760+200= 2060		
GUI revision	980+730+420+240+180 =2550		
Data compression algorithm		910	
External applications interface	770+330+200+160= 1460		
COTS upgrades	540+380+190= 1110	741+302+221+197= 1461	
Database restructure	690+480+310+210+170= 1860		
Routing algorithms		494+198= 692	
Diagnostic aids	360	477+318+184= 979	
TOTAL:	13620	13531	

Project C: Architecting for Change USAF/ESC-TRW CCPDS-R Project*

When investments made in architecture, average time for change order becomes relatively stable over time...

* Walker Royce, Software Project Management: A Unified Framework. Addison-Wesley, 1998.

Single-System TOC Model Example

	A	В	С	D	E
1	Input Parameters				
2	input Parameters	Α	В	С	
3	Software Size (KSLOC)	100	100	355	
4	# Change Requests/Release	373	1005	1600	
5	# Change Requests (I&T only)				
6	#I&T Change Requests/Release/ > 1 PM	27	22		
7	#Total Change Requests/Release/ > 1 PM			16	
8	Change Request Fix Time (See assumption #2)	261	356	263	
9	Total Effort (Person Months)	731	865	1900	
10	% Arch, RESL	5%	5%	25%	
11	% Rework, RVOL	35.70%	41.16%	13.85%	
12					
13	Cumulative Total Cost of Ownership	Project A	Project B	Project C	
14	Cycle 1	40.70%	46.16%	38.85%	
15	Cycle 2	76.41%	87.31%	52.70%	
16	Cycle 3	112.11%	128.47%	66.55%	
17	Cycle 4	147.82%	169.62%	80.40%	
18	Cycle 5	183.52%	210.78%	94.25%	

Relative* Total Ownership Cost (TOC)

* Cumulative architecting and rework effort relative to initial development effort

- USC and NPS collaborating on modeling value of investing in product-line flexibility with Return-On-Investment (ROI) and Total Ownership Cost (TOC) parametric models
 - System-level product line flexibility investment model
 - Software product line flexibility investment model.
 - Net present value (NPV) calculations included
- Models adapted from the Constructive Product Line Investment Model (COPLIMO*)
 - Special versions also developed for Daimler Chrysler and JPL
- * Barry Boehm, A. Winsor Brown, Ray Madachy, Ye Yang, "A Software Product Line Life Cycle Cost Estimation Model," Proceedings of the 2004 International Symposium on Empirical Software Engineering, 2004

Systems Product Line Flexibility Value Model

For Set of Products:

- Average Product Cost
- Annual Change
 Cost
- Ownership Time
- Percent Mission-Unique, Adapted, Reused
- Relative Cost of Developing for PL Flexibility via Reuse
- Relative Costs of Reuse

Systems PL Flexibility Value Model

Systems Product Line Results

SYSTEMS ENGINEERING Research Center		Systems	Prod Val	luct L ue Mo	ine Fle. Ddel	xibi	lity Preferences			
Welcome SERC Collaborator										
Open Save Save As)									
System Costs										
Average Product Developmer	it Cost (Bi	urdened \$I	M) 5		Owne	rship	Time (Years) 3			
Annual Change Cost (% of De	velopme	ent Cost)	10)	Intere	st Ra	ate (Annual %) 7			
Product Line Percentages Relative Costs of Reuse (%)										
Unique % 40	Relative	e Cost of R	euse fo	or Ada	oted 40					
Adapted % 30	Relative	e Cost of R	euse fo	or Reu	sed 5					
Reused % 30										
Investment Cost										
Relative Cost of Developing for	or PL Flex	kibility via F	Reuse	1.7						
Calculate										
Results										
# of Products	1 2	3	4	5	6 7		Return on Investment			
Development Cost (\$M)	\$7.1 \$2	2.7 \$2.7	\$2.7	\$2.7	\$2.7 \$2	2.7				

of Products

SYSTEMS ENGINEERING Research Center

- TOC approach has several advantages
 - Increasingly required (DoDI 5000.02, WSARA 2009)
 - Easy to understand across specialty domains
 - Clear cause-effect relationships, straightforward calibration
- Important to determine evolution requirements
- Basic models available for foreseeable change
 - Individual systems, families of systems
 - Best to have calibration data
- Candidate Extensions
 - Refined and extended model capabilities
 - Particular domains, tradeoff analyses, enterprise analysis
 - Effects of adaptation to unforeseeable change
 - Integration with alternative valuation models