Aeronautical Systems Center

Engineering for War Fighter Integration of NetCentric Systems

Presentation to the 13th Annual Systems Engineering Conference

27 October 2010

Ms. Eileen Bjorkman SAF/A6W Pentagon, Washington DC eileen.bjorkman@pentagon.af.mil Mr. Timothy Menke
ASC/XRA (SIMAF)
Wright Patterson AFB OH
timothy.menke@wpafb.af.mil

Cleared for Public Release: 88ABW-2010-5450, 12 October 2010

Overview

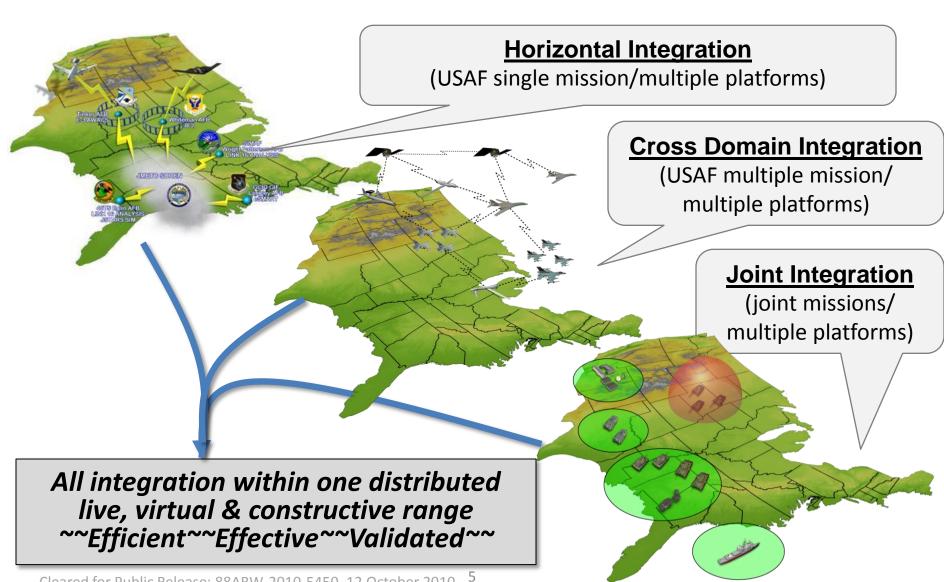
- Air Force Integrated Collaborative Environment (AF-ICE) Description
- Systems Engineering Process
- VV&A
- Air-to-Ground Integration Layer Exploration (AGILE) Live, Virtual, and Constructive (LVC) Venue
- AFICE today and tomorrow

AFICE Objectives

- Thorough testing with credible analysis to deliver better products at reduced costs
- An acquisition lifecycle-assessment approach to leverage resources and expertise at distributed locations
- An analytically based, system engineering process to support traceability of war fighter requirements throughout the acquisition life cycle
- Compose- able, reusable, non-duplicative networked and instrumented infrastructure resources, consisting of LVC assets
- Primary focus: Identify, categorize, assess, and report integration and interoperability gaps and seams
- Secondary mission: Assessment test-bed for risk-reduction activities for any program

Parameter

Assess the "Seams"


Dominant Air Power: Design For Tomorrow...Deliver Today **CONOPs** War-Fighter **CONEMPS GAPS** Operational Context Requirement allocation to Programs CDD's Assessment Results evaluated, in context, against the WF GAP Assessment Structure Program **Program** Program A AFICE aids programs in AFICE **Assessments** defining and assessing integration and **TEST** for TEST for **TEST** for interoperability issues Program Program Program such as NR-KPP* **AFICE Support** A to Test! *Net-Ready Key Performance

AF-ICE Vision:

It's all about the integration

design

and

standards

principles!

Investment Strategy

Three AFICE Key "Tenets"

Dominant Air Power: Design For Tomorrow...Deliver Today

Assessment/Analysis

OBJECTIVES MET!

1. Customer Need "War-Fighter Gap"

Events

 Repeatable exercise of AFICE infrastructure and processes!

4. **Prove it!** Prove the tools and processes below serve real customers needs!

> 3. Assessments built around analytical objectives using

> > sound system engineering principles to configure the tools to meet customers rqmts!

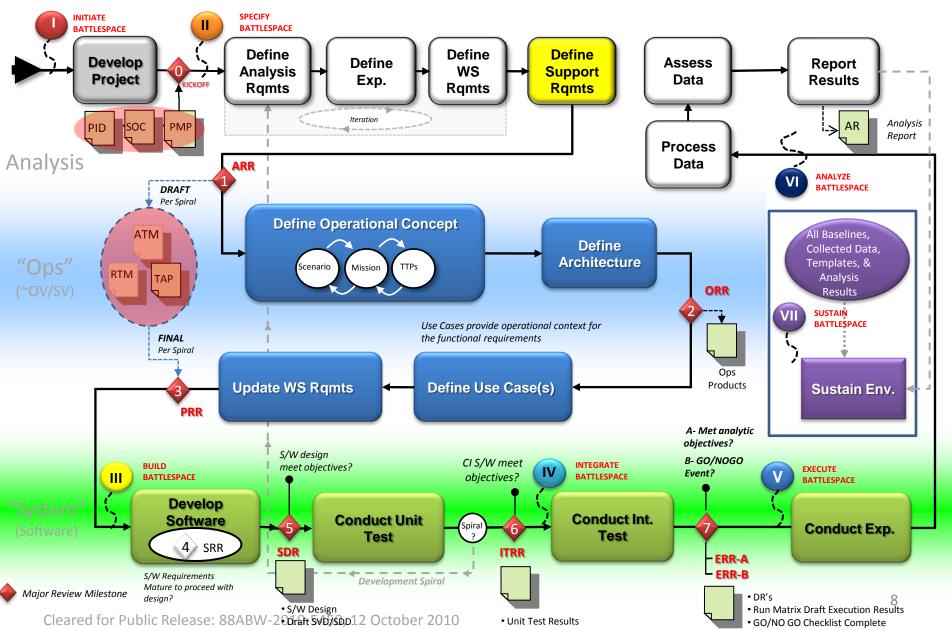
Capability 2. Tools built to a Builds set of

(Infrastructure) Modeling, Simulation, and Analytic tools, data, & models

 A repeatable series of related actions to produce a desire outcome

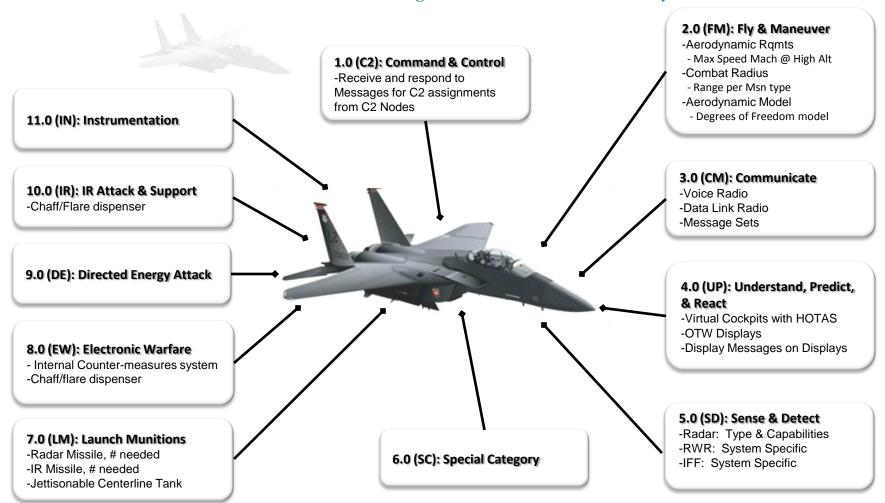
Process

"M&S Battle-space"



FY11 SIMAF Master Event Process

SE embedded process in a product life-cycle, Updated 1 Oct 2010



Organization of Requirements

Functional Requirement Lexicon applied to all Projects

Dominant Air Power: Design For Tomorrow...Deliver Today

Key Takeaway: Requirement owners speak in the an organized and consistent language to the software developers!

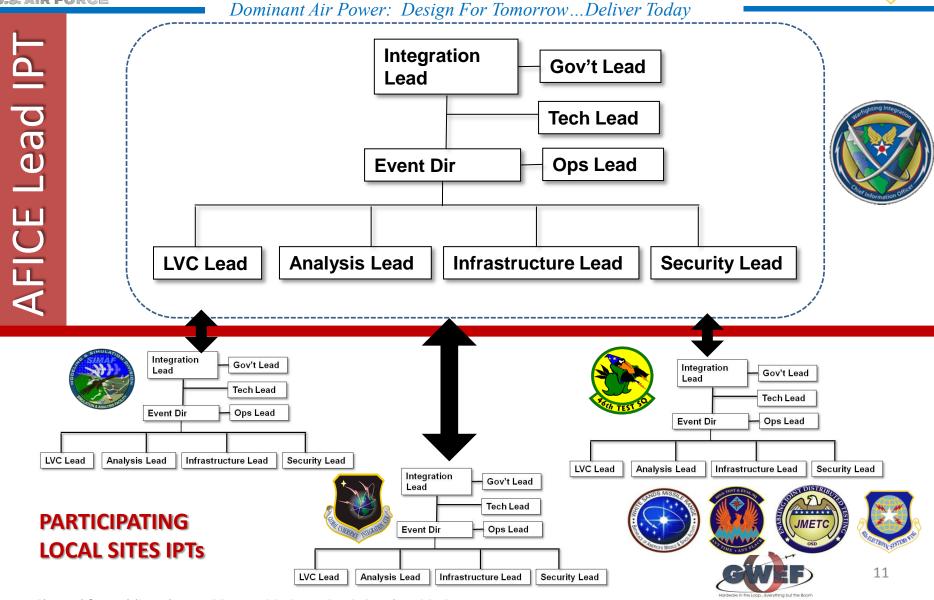
Reduces errors and Requirement Churn!

EAAGLES

<u>Extensible Architecture for Analysis and Generation of Linked Simulations</u>

Dominant Air Power: Design For Tomorrow...Deliver Today

- ☐ Capability-Based Design
- ☐ Electronic combat environment
- ☐ Robust air-to-air *and* air-to-ground
- ☐ Designed for hundreds of players
- ☐ Proven real-time architecture
- ☐ Optimized for the PC, yet <u>platform independent</u>
- ☐ Variable and Scalable Fidelity, Object Oriented
- ☐ Hardware: Dual to Networked PC "clusters"
- ☐ Hardware-in-the-Loop
- ☐ Distributed simulation via DIS, HLA, & TENA
- ☐ Government owned and managed software


The EAAGLES framework is publically released and available via

www.openeaagles.org

AFICE Distributed LVC Team

Mapping local processes

u.s. air force

VV&A Problem Statement

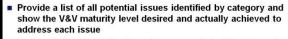
- The primary role of V&V is to <u>reduce risk</u>.
 - The greater the risk, the more V&V are required.
- Requirements and intended use must exist before V&V can be conducted; acceptability criteria must be developed and documented:
 - Acceptability criteria should be agreed upon between the test manager and the accreditation authority.
 - Acceptability criteria are a measure of the risk the accreditation authority is willing to accept prior to conducting the test.
- V&V is a never-ending process
 - V&V continues during test execution. Information may need to be collected during actual test/event execution to ensure that the environment is correct, the simulations are running correctly, and the simulations are interacting with each other correctly.

VV&A Process Framework

Structuring the Project

Dominant Air Power: Design For Tomorrow...Deliver Today

Maturity Level	Use Characterization	Validation Referent	V&V Evidence
0	None	None	None
1	SME judgments	SME opinion of system behavior	SME judgment of completeness & accuracy
2	Representation requirements + primary use risks	SME opinion of system Inventory of completeness + SM judgment of accuracy	
3	Level 2 + tolerable error characteristics & use risk estimates for errors & bounds	Quantitative estimate of system behavior & accuracy of estimate	Completeness & accuracy of evaluation results
4 Level 3 + tolerable uncertainties & sensitivities		Level 3 + uncertainty in behavior estimates	Level 3 + uncertainty evaluation results
5	Level 4 + mathematical derivation description	Level 4 + mathematical derivation description	Level 4 + mathematical proof


	Probability that issue will lead to the consequences for the intended use*				
Consequence*	Substantial	Moderate	Small	Slight	
Catastrophic	4-5	4-5	3-4	3	
Critical	4-5	3-4	3	1-2	
Marginal	3	2-3	1-2	1	
Negligible	2	1-2	1	1	

- Numbers in boxes indicate desired V&V maturity level to support an accreditation decision
- Desired V&V maturity levels must be justified based on test objectives
- See notes page for more information

Step 1. Identify & Categorize VV&A Issues

Step 2. V&V Maturity Levels

VV&A Process Complete

- The V&V maturity level must be supported with evidence!
- Document each potential issue using the "V&V RISK ANALYSIS" outline on the next chart
- For each risk area identified, provide the chart depicted in Step 4, along with the following information:
 - Specific problem
 - The specific known potential consequences
 - Any additional risk mitigation or V&V activities that may take place before use of the simulation environment
 - A projected schedule and cost to raise the V&V Maturity to the desired level (if possible)

Step 3. V&V Risk Matrix

 Risk Level = V&V Maturity Required – V&V Maturity Achieved (or Achievable)

Risk Level	VV&A Type	Risk Description Model/simulation is specifically unable to meet requirement referent for intended use.		
5/Very High	Verification Failure			
4/High	Negative Indication to Verify	V&V accomplished was inconclusive to fully determine verification requirement but data trends suggest model or simulation will fail compliance criteria for intended use.		
2-3/Moderate	Failure to Verify	V&V accomplished failed to determine whether the model or simulation meets requirement referent for intended use.		
1/Low Risk	Positive Indication to Verify	V&V accomplished was inconclusive to fully determine verification requirement but data trends suggest model or simulation may be compliant and is suitable for intended use.		
<1/Very Low Risk	Verified	V&V accomplished indicates model or simulation is verified against the requirement referent for intended use.		

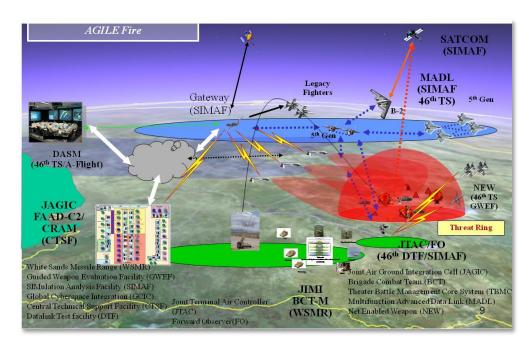
Step 5. Report Risk

Step 4. Determine Risk Level

VV&A Approach

Applying VV&A to AFICE LVC Distributed Assessments

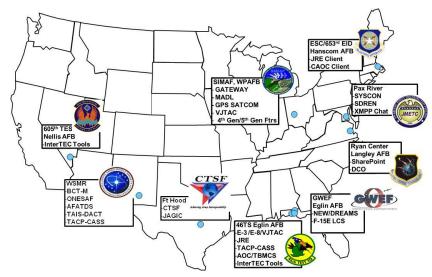
- Apply template to selected potions of AGILE Fire III
- Report, by project, results to mock Accreditation Authority or Authorities
 - Include Assessed Risk Levels, Ability to mitigate Risk, and Resulting VV&A Risk levels per template
- Report, for entire event, results to mock "Event Accreditation Authority"
- Document lessons learned
- Collect VV&A documentation where applicable
- Provide feedback to further update the template
 - Assess applicability in whole or part (with new upgrades) in preparing for AGILE FIRE IV
- Document entire process as a Use Case




AFICE Venue

Unique Venue to support AFICE Objectives

- Focus on the interoperability within and between space, air and ground communication layers
- Capture the requirements for emerging technologies/ interfaces to existing force structure in mission contexts.
- Support the customers by enabling a SOS environment to meet their Net Centric assessment needs!
 - Requirements drive assessments
 - Analysis rooted in mission threads
 - Net Centric Focus to link their system performance to their operational partners


AGILE II/III Description

Air and Ground Integrated Layer Exploration

Dominant Air Power: Design For Tomorrow...Deliver Today

- Multifunction Advanced Data Link (MADL)
 - AFMC/Electronic Systems Center (ESC), SAF/A6W
- Gateway
 - AFMC/ESC; Air Force Command and Control Integration Center (AFC2IC)
- AFATDS TACP CASS
 - PM AFATDS/TACP-CASS/Ft Sill FSC
- Joint Air Ground Integration Cell (JAGIC)
 - ACC/A3D USAF OPR
 - Joint and Combined Integration (JACI) USA OPR
- Dynamic Air Space Management
 - AFMC/ESC-PM TBMCS/PM TAIS/PM AFATDS
- Counter Rocket Artillery and Mortar (C-RAM)
 - PEO C3T/PD- CRAM
- Net-Enabled Weapon (NEW)
 - NEW Interoperability Working Group (NEWIG), SAF/A6W
- Capability Net Centric Test & Training (CNCTT)
 - 505th Command Control Wing (CCW)

AGILE III's Schedule

- AGILE III's next planning Conference is 26 to 28 Oct at WPAFB
- First Integration Spiral is December 2010

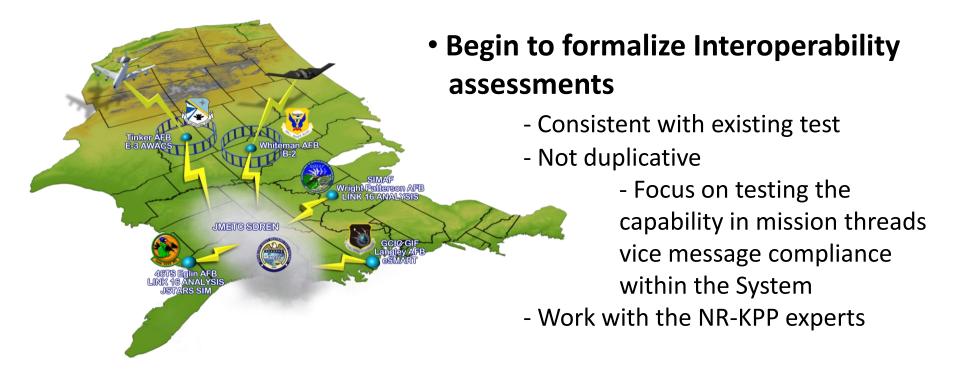
Using AGILE

AGILE III and VV&A

- Part of OSD "VV&A Use Case" project tied to M&S Coordination Office High Level Task
- Used Networked-Enabled Weapon (NEW) as notional SUT
- Applied draft "Evaluation and Reporting Framework"
 - Risk-based framework
 - Pragmatic approach designed to achieve confidence in LVC environment while minimizing cost and schedule impacts
 - Focused on Live, Virtual, Constructive Distributed Environment (LVC-DE) for Test and Evaluation
- Reported results to mock Accreditation Authority (SAF/A6W SL) on 17 Aug 10
- Updated draft framework based on feedback
- Reapply as Part of AGILE III, and IV in FY10

Formalizing AFICE

- CONOPs signed by Brig Gen Bender (SAF/A6W) on 1 October 2010
- CONOPs establishes AFICE focus on program Integration and Interoperability
- Formalizes AFICE Governance
 - -Relationship to WFI GOSG
 - -Formation of an O-6/GS15 AFICE Advisory
 Group (AAG)
 - -Formation of an AFICE Users Group (AUG)
- CONOPS identifies a process for nomination of a War Fighter Gap



AFICE and NR-KPP

Present and Future

Dominant Air Power: Design For Tomorrow...Deliver Today

AFICE Goal: Move beyond finding problems after system release to engaging with programs and supporting primes to discover interoperability problems <u>before</u> system release

Summary

- AFICE uses a robust SE process to establish and maintain requirement traceability from analytic objectives through software development
- The resulting LVC environment is uniquely "engineered" for each customer based upon their analysis needs - Tied to a War Fighting Requirement
- AFICE uses these environments to support integration and interoperability assessments based upon War-Fighter capability gaps

Contact Information

Dominant Air Power: Design For Tomorrow...Deliver Today

Ms. Eileen Bjorkman

Senior Advisor, Warfighting Systems Integration

SAF/A6W

Pentagon, Washington DC

eileen.bjorkman@pentagon.af.mil

(703) 588-5055, DSN 425-5055

Mr. Timothy Menke

Technical Director, Modeling and Simulation Division

ASC/XRA (SIMAF)

Wright Patterson AFB OH

timothy.menke@wpafb.af.mil

(937) 255-1276 (DSN 785)