

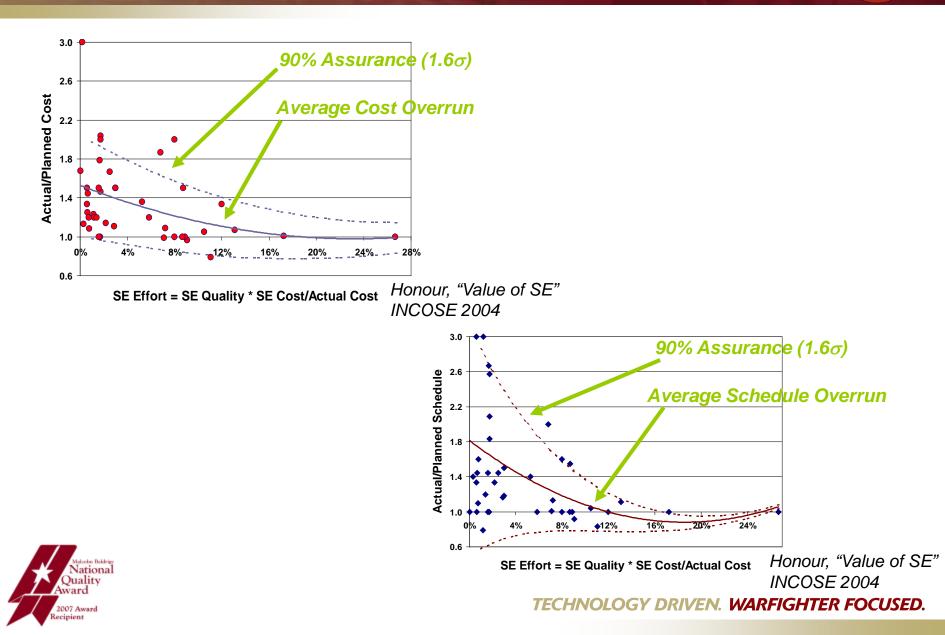
Value of Systems Engineering

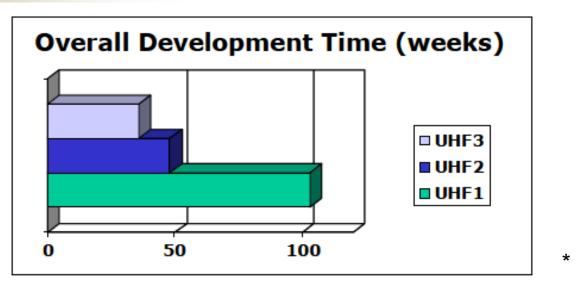
Kerri Polidore, Systems Engineer ARDEC- Systems Engineering Infrastructure Kerri.polidore@us.army.mil

973-724-1983

• "...there is a strong case to be made for a quantitative relationship between systems engineering investment and the quality of program performance." – Eric Honour, Value of Systems Engineering

How can we capture the value of Systems Engineering?


Goals & Strategy


Goal	Strategy
What information is available about the value of SE?	Research •INCOSE Value of SE & SE ROI •Qualitative findings •Quantitative findings
Determine Value of Systems Engineering on a given program at ARDEC	Use the Voice of the Customer/Interviews •Determine how much SE was done •How has SE benefited the program? •Where was there room for SE- related improvement?
Capture SE lessons learned to foster improvement	

RDECOMOutside Findings- INCOSE

- Boeing study- Parallel development of 3 Universal Holding Fixture (UHF)
- UHF 3 was the most complex system
- More rigorous SE resulted in shorter durations between:
 - Requirements to subcontract RFP
 - Design to production
 - Overall development time
- Also superior quality of work (subjective)

* Honour, Eric C. <u>Understanding the Value of Systems Engineering.</u> Pg. 8. Honourcode, Inc. **TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.**

Outside Findings- INCOSE

- Systems Engineering Return on Investment (ROI)
 - Follow up on Value of SE and SE Effectiveness research
- Interview a set of programs from participating organizations
- Formal, consistent interview format
- Gather data in regard to:
 - Funding method
 - Total program cost
 - Cost compliance (% over or under planned cost)
 - Schedule compliance (% over or under planned schedule)
 - Percentage of program cost used in SE effort
 - Subjective assessment of SE quality (scale of 1- poor to 10- world class)

Outside Findings- INCOSE

- Correlation between project success and ratio of effort on each area of SE to total SE effort
 - Verification/Validation
 - Technical Management/Leadership
 - Technical Analysis
 - System Implementation (integration)
 - System Architecting
 - Requirements Engineering
 - Scope Management
 - Mission/Purpose Definition
- Successful projects experienced cost overrun < 3%
 - ranging from 38% underrun to 1% overrun
- Unsuccessful projects ranged from 3% to 200% overrun

Outside Findings- INCOSE

- Unsuccessful projects, in comparison to successful projects, expended:
 - 50% less effort in mission definition
 - 33% less effort in requirements engineering
 - 33% less effort in scope management
 - 40% more effort in systems architecting
 - 60% more effort in implementation/integration
 - 25% more effort in verification/validation

Successful Projects Spent More Up Front

 "These findings are consistent with the long-held anecdotal knowledge... that programs expending more front-end effort can expect to reduce overall cost and schedule"*

> •Honour, Eric C. "Demographics in Measuring Systems Engineering Return on Investment (SE-ROI)". INCOSE, 2009.

How does ARDEC measure up?

- Metrics
- Project Exit Interviews
- Lessons Learned

- Gather metrics on select projects during execution to monitor:
 - 1. Requirements Stability
 - 2. Quality of Requirements
 - 3. Requirements Traceability
 - 4. Procedure Compliance
 - 5. Customer Satisfaction
 - 6. Process Tailoring
 - 7. Technical Performance Measures(TPMs)
 - 8. Project Deliverables
 - 9. Execution Per Plan
 - 10.Technical Reviews

RDECOM Overview of Exercise

- Interview SE and ARDEC Project Officer after project close-out
 - Gather feedback on all areas of our
 Organizational Standard Process (OSP)
 - Establish an informal dialogue to encourage anecdotal feedback as well
 - Included personnel from both System
 Engineering and Project Management to ensure unbiased responses

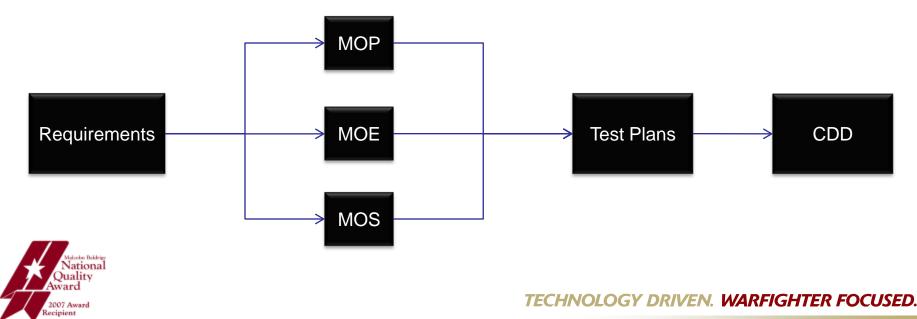
Findings- Communication

- SE role in communication is huge
 - Synthesize information from all silos
 - Dialogue with customer/user to get the right requirements
 - Combination of the right information and the right tools
 - Ex: Tracing requirements is only useful when the right requirements are being traced!
 - Also a huge role in contractor management

- Laying out the project plan from a SE perspective enables success
 - Metrics & measures communicate program status
 - Provide context to frame where a project is in its lifecycle

Findings- Requirements

- "Application of a tool for requirements management is critical"
- Use of DOORS as an SE tool
 - Limitations
 - Licenses- one SEL was the only IPT member with DOORS access
 - Benefits
 - Able to leverage DOORS database for numerous products and activities
 - Requirements Traceability
 - Verification plan



- Use of Quality Function Deployment (QFD) as a requirements tool
 - One program successfully implemented a QFD
 - Resulted in stable requirements through the program
 - Simplified writing the requirements document (i.e. Concept Development Document)

- Speaking to the SE and ARDEC Project Officer allowed for further discussion on successful QFD implementation
 - Gathered insight on:
 - Contracting the exercise
 - Roles and required participation
 - Leveraging the QFD to enable transition & communicate "readiness" to our acquisition partners

RDECOM Findings- Risk Management

- SE's role in regard to Risk Management is pivotal
 - Communicate risk to management
 - Organize & understand variables affecting risk
 - Traditional cascading risk charts, risk matrix, risk register
 - Also implement quantitative risk analysis
 - Assess current design state

- SE products aid in decision making
 - Removes emotion
 - Enables fact-based decisions & acquisition
 - Decision Analysis- builds consensus, defines alternatives, assigns priority
 - Example:
 - Feasibility study on one project showed that one alternative was feasible in a 10 year time frame, while another was not

- SE is commonly misunderstood
 - If tools are properly implemented, they provide a bridge to communicate with our Acquisition Partners
 - SE Products noted by projects to be especially helpful:
 - Feasibility study
 - QFD
 - Interface Control Documents (ICDs)
 - Risk matrix, associated products
- Malerian Bakking National Quality Award 2007 Award Recipient
- Technology Readiness Level (TRL) tool

- Procedures and templates provide a useful framework for a SE
 - ARDEC SE OSP had not been established when one project began
 - SE had to research procedures and best practices on his own in order to implement the SE Process

- Stakeholder buy-in is key
 - Define acceptance criteria
 - Example:
 - Problems occurred on one project during testing as a result of undefined:
 - MOEs, MOPs, MOSs

- Establishing knowledge of and adherence to SE best practices is essential from the start of a project
 - Example:
 - Configuration Management: SE had little understanding of the process & the level of implementation appropriate for Technology Development
 - Not implementing from inception made it difficult to instantiate later on within the IPT
 - Resulted in rework during project close-out
- Inexperience is a big barrier to successful SE
 - Strong training base, weak in amount of experienced personnel

RDECOM Takeaway- Value of SE

- Benefits within ARDEC
 - Open dialogue about the strengths and weaknesses of our organization and OSP after close-out allows for greater insight
 - Employees do not feel threatened
 - Project success is not threatened
 - Allow for greater understanding/documentation of lessons learned
 - Promotes SE within the organization
 - Justification for continued funding of SE Infrastructure
 - Greater understanding of what a SE can provide to a program

RDECOM Takeaway- Value of SE

- Direction of Value of SE at ARDEC efforts
 - Enable robust analysis of the Value of SE by capturing more qualitative AND quantitative data
 - Continue to gather feedback from projects
 - Capture lessons learned
 - Improve ARDEC's SE OSP
 - Incorporate findings into Internal SE Training
 - Leverage cost, schedule & performance data collected by Project Management to correlate the SE Metrics we collect to project performance

- Allow for more robust analysis of internal ROI

- "If you have a good systems engineer [on a program], the program goes great."
 ARDEC Project Officer
- ARDEC projects implement SE and find utility in our SE OSP
 - Strive for Continuous Process Improvement (CPI)

Systems Engineering is beneficial in regard to project cost, schedule and performance

