Stryker NBCRV Reliability Growth

- Sections
 - Production Verification Testing (4/2006-7/2007)
 - Design For Reliability (12/2007-12/2008)
 - Reliability Growth Testing (4/2009-11/2009)
 - Conclusion

- April 2006 through July 2007
- NBCRV ORD requirement is 1000 MMBSA
- NBCRV Hardware / Software (w/o Government Furnished Equipment) requirement is 2000 MMBSA

- PVT (Production Verification Test) / Durability testing
 - Stopped at ~70% of planned 24,000 mile RAM test
 - Multitude of CFE (Contractor Furnished Equipment) HW/SW System Abort's
 - Slightly over a half of the requirements demonstrated during PVT
 - No growth during PVT / Durability testing
 - Testing was halted due to low Reliability

NBCRV PVT was halted due to Low Reliability

ReliaSoft's RGA 6 PRO - RGA.ReliaSoft.com

Beta (hyp.)=1.0000, Beta=1.0564

PVT was halted due to Low Reliability

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-104, dated 10-01-10

- Execute a System Engineering based Reliability Growth Program to satisfy User Requirements
- Exit Criteria:
 - Off Ramp based on demonstration of an instantaneous 1,333 MMBSA with 70% confidence
 - Demonstration of a point estimate of 1,333 MMBSA or better over 14K Miles

What is DFR?

- DFR is Design for Reliability
 - Up front use of Reliability Tools to influence design
 - Infusing a mindset in the design process that promotes striving for improved Reliability
 - Produce a higher growth potential of design
- A change in attitude
 - Aggressive use of Reliability principles
 - Commitment to the DOD directive of Reliability Growth
- DFR tools:
 - Boundary Diagram
 - P-Diagram (Parameter Diagram)
 - DFMEA (Design Failure Modes Effects Analysis)
 - FTA (Fault Tree Analysis) / Prediction
 - DVP&R (Design Verification Plan and Report)

Up Front Use of Reliability Tools to change the Growth Potential of a Design

New Reliability Standard ANSI/GEIA-STD-0009 Objectives

11/4/2010

DFR Quad Chart

ED&D Process to Grow R - Identify & Mitigate FMs

GDLS Dev Phase	GEIA R Standard Objectives	DFR Activities	DFR Tools	Reliability Deliverable
SRR	1. Customer / User Requirements and Constraints.	Understand and define Customer Reliability (R) Objectives	Required Rel. Assess Rel. R-CIL	Customer Requirements Constraints List
SFR		Define "R" constraints Initiate R Growth Program Plan Initiate System R model	Sys FTA / RBD Trade Studies Sys DFMEA	Reliability Model & Metrics System R-CIL
PDR	2. Design and Redesign for	Model subsys to LRU level. Qualitatively find high risk FMs Mitigate critical FMs to grow R	B-Diag P-Diag LRU DFMEA RCIL-DVP	Reliability Subsystem and LRU R-CIL
CDR	Reliability - DFR (Proactively assess, improve and optimize reliability) 3. Produce Reliabile Systems / Products	Identify root causes of FMs Quantitatively identify and Mitigate critical FMs to grow R	DVP Early Detection FM Mitigation	Reliability LRU FM & CA R-CIL
TRR		Early hardware FM detection Demonstrate & Mitigate Mitigate Subsys FMs to grow R	PQT FM Mitigation Validate Relibility	Reliability Hardware FM R-CIL
LRIP		Early Sys R demonstration Failure Analysis (FA) and write corrective actions (CA) grow R	FRACAS (Detect & Mitigate)	Reliability Subsys & Sys Hrdwr R-CIL
FRP	4. Monitor & Assess User Reliability	Actively Assess R TAF TAF Capture R growth opportunities for FRP	FRACAS Monitor R Growth	Vehicle Verification & Hdwr FM R-CIL

Number of Failure Modes

Manage Reliability Growth with Metrics

DFR - Mitigation of Potential FMs yields Reliability Growth

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-104, dated 10-01-10

DIECT MANAG

Top Level DFR Summary

- Major steps toward start of design and test
 - Hardware Reliability Design for Reliability Methodology
 - Boundary Diagrams
 - Parameter Diagrams
 - Design FMEA (Failure Mode and Effect Analysis)
 - Incident Screening Team
 - Failure Prevention Review Board (FPRB)
 - Steering FPRB
 - Operational Reliability
 - Personnel/Maintainer/Operator Training
 - Manuals
 - Quality/Manufacturing
 - Vehicle Shake down
 - Process FMEA
 - Vendor/Supplier Training

Three Major Areas to Facilitate Reliability Growth Potential

- Center Piece of the DFR Process
 - DFMEA uses the Boundary Diagram and P-diagram as a jump off point for analysis
 - DFMEA allows for Risk assessment
 - DFMEA targets candidates for redesign
 - DFMEA feeds and compliments the Fault Tree Analysis
 - DFMEA feeds the DVP&R

Fault Tree Analysis

- Fault Tree Analysis (FTA)
 - Top-down analysis identifies failure modes of parts that could cause System Abort (SA)
 - Failure Definition Scoring Criteria (FDSC) for Production
 Verification Testing (PVT) used to guide tree contents
 - Failure modes identified during Failure Modes Effects
 Analysis (FMEA) included in Fault Tree
 - Failure Rate Data from known sources used in

Screening Team Work Flow Progress

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-104, dated 10-01-10

Summary of DFR

- DFR is a Two step process
 - Discover Failure Modes
 - Mitigate Failure Modes
- Statistical and Engineering Analysis
 - Calculate Reliability using Fault Tree Model
 - Fix it using Failure Prevention Review Board (Corrective Actions)
 - Using the NBCRV FDSC (Failure Definition and Scoring Criteria) 15 vehicle systems were chosen as candidates for improving the vehicle
 - DFMEAs were then performed on those systems concentrating on System Abort Failure Modes
 - Discovered near 2.5k root causes of failure modes which cause System Aborts
 - Those failure modes were screened and selectively addressed by corrective actions through FPRB
 - 230 root causes fixed with Design changes
 - Predicted MMBSA (Mean Miles Between System Abort) of approximately 1150 to start Reliability Growth Test (RGT) based on Fault Tree Analysis

Fault Tree Showed an RGT start around 1150 MMBSA

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-104, dated 10-01-10

Operational Reliability

- Training of crews and maintainers
 - Classes were conducted by GDLS certified trainers
 - OPNET November '08 Classroom and then Vehicle
 - RGT delta teach: 2/20/09-2/26/09
 - FLMNET CCS delta teach: 3/16-3/20 2009
- Technical Manuals (TMs)
 - TMs delivered: 2/02/09
 - Items that did not make the February drop were made into ERRATA sheets and sent to be incorporated into the Manuals
 - Vendor TMs delivered in Jan. '09.

Operational Failures Mitigated by Training and Improved Manuals

Quality and Manufacturing

- CCOPS supplier
- Harness supplier
- Production quality
 - 2009 vs 2006 Number of defects reduced by 15 times.

Production Quality along with Supplier Quality addressed

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-104, dated 10-01-10

- April 2009 through November 2009
- 14000 miles
 - Phase I 4000 miles / Phase II 4000 miles / Off Ramp
 Opportunity / Phase III 6000 miles
- Off-ramp opportunity at 8000 miles
- Shakedown
 - 400 before start of test
 - 100 after insertion points
 - Failures during shakedown not scored if they were directly attributable to DFR modifications

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-104, dated 10-01-10

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-104, dated 10-01-10

- NBCRV PVT/Durability was halted due to poor reliability
- The Design For Reliability resulted in a drastic jump in Reliability that was demonstrated in RGT
- RGT was ended early (8k miles vs. 14k miles) because the Reliability Requirements (1333 MMBSA) were exceeded with Confidence.

<u>Corresponding Author:</u> *Dmitry Tananko, PhD* Manager, Reliability Department General Dynamics Land Systems <u>tanankod@gdls.com</u> (586) 634-5071

Approved for Public Release, Distribution Unlimited, GDLS approved, Log No. 2010-104, dated 10-01-10

