Acquisition, Technology and Logistics

Can Sustainability be Factored into DoD Acquisition Programs?

Paul Yaroschak Deputy Director, Chemical & Material Risk Management Office of the Secretary of Defense

The Vision

Acquisition, Technology and Logistics

DoD developers, program managers, and prime contractors <u>analyze alternatives</u> for meeting mission requirements and <u>make</u> <u>informed decisions</u> that result in:

- Lower Total Ownership Cost
- Sustainable Systems

How? Use Life Cycle Impact Assessment

Sustainability

Acquisition, Technology and Logistics

Sustainability is seen as a durable and self sufficient balance between social, economical and environmental factors

Sustainability in DoD

Acquisition, Technology and Logistics

DoD Strategic Sustainability Performance Plan

"The Department's vision of sustainability is to **maintain the ability to operate into the future without decline – either in the mission or in the natural and manufactured systems that support it.** DoD embraces sustainability as a means of improving mission accomplishment. Sustainability is not an individual Departmental program; rather, it is an organizing paradigm that **applies to all DoD mission and program areas.** DoD personnel are learning to apply this mindset to their practices to **improve mission performance and reduce lifecycle costs.**"

DoD Sustainability Sectors

Sustainability in DoD Acquisition

From Development through Disposal

Sustainability in DoD Acquisition

From Development through Disposal

95% of Life Cycle Cost Locked-In Early

From W. J. Larson & L. K. Pranke (1999) Human Spaceflight: Mission Analysis and Design

Most Risks After System Delivery

What We've Learned

- Pockets of good practice & results exist
- Some practices stymied
- Sustainability insufficiently considered
 - Water use, energy, noise, toxic chemical use
- Need better <u>Total Ownership Cost</u> estimates
 - Not all life cycle costs (LCC) estimated and analyzed
 - Poor transparency for LCC
 - LCCs often passed to operators due to procurement costs
- We need a consistent DoD methodology for analyzing sustainability & related life cycle costs

Life Cycle Impact Assessment ISO 14040 Series

Acquisition, Technology and Logistics

System Boundary

DoD Systems Sustainability

Cross-Cutting Risk & Cost Factor

Making Wise Chemical/Material Decisions

Physical, Chemical, & Toxicity Data Needs

- Five types of data displayed in standard Tables
- Data needs <u>vary</u> based on uses and predicted exposures
- Data can be used to better identify, assess, & mitigate risks

Challenges

Acquisition, Technology and Logistics

 What phases in the acquisition process can we reasonably assess sustainability?

DoD Acquisition Process

Materiel Development Decision precedes entry into any phase of the acquisition process

- PDR = Preliminary Design Review CDR = Critical Design Review
- FRP = Full Rate Production

Acquisition, Technology and Logistics

• What are the life cycle assessment boundaries?

What are the Boundaries?

Acquisition, Technology and Logistics

Cradle-to-Grave

What are the Boundaries?

Acquisition, Technology and Logistics

Gate-to-Grave

Challenges

Acquisition, Technology and Logistics

 Do we assess for whole systems, components, subcomponents?

Challenges

- What phases in the acquisition process can we reasonably assess sustainability?
- What are the life cycle assessment boundaries?
- Do we assess for whole systems, components, subcomponents?
- Where do we get the data to estimate life cycle costs?
- There are many players in the acquisition process
- The acquisition system is complex & changing
- Priorities are acquisition cost, performance, schedule

Next Steps

- Convene a DoD steering group...done
- Benchmarking study on methods for analyzing sustainability...done
- Collect quantitative case studies
- Adopt method(s) to DoD acquisition process
 - What factors should be considered in the acquisition process?
 - What life cycle costs need to be considered?
- Pilot/test the process...learn...refine
- Develop a Military Standard for "Sustainability in Acquisition"
- **Develop training module -** Defense Acquisition University

The Horse to Ride

Acquisition, Technology and Logistics

ISO Standard 14040 Series + E.O. 13514 = Military Standard for LCA (General framework) (Driver) (Uniform DoD methodology)

End Product

DRAFT – Pre-decisional	
	NOT MEASUREMENT SENSITIVE
	MIL-STD-XXX as of 19 August 2010
DEPARTMENT OF DEFENSE LIFE CYCLE ASSESSMENT PROCESS FOR SUST A DIA DIA LTV IN DOD A COLUMNITIONS	
SUSTAINABILITY IN DOD ACQUISITIONS	
Not for distribution outside the Do	D Sustainability in Acquisition Working Group.

Questions & Discussion

Paul Yaroschak, P.E. Deputy Director for Chemical & Material Risk Management Office of the Deputy Under Secretary of Defense (Installations & Environment) 1225 S. Clark St., Suite 1500 Arlington, VA 22202 703-604-0641 paul.yaroschak@osd.mil

Acquisition, Technology and Logistics

Extra Slides

Comparing Alternatives

DoD Acquisition Policies

Acquisition, Technology and Logistics

DoDD 5000.1 – The Defense Acquisition System (2007)

 "<u>Safety shall be addressed</u> throughout the acquisition process. Safety considerations include human (includes human/system interfaces), toxic/hazardous materials and substances, …"

DoDI 5000.2 – Operation of the Defense Acquisition System (2008)

- Programmatic Environmental and Occupational Health Evaluation (PESHE) is required....(at various milestones).
- As part of risk management, the PM shall <u>eliminate ESOH hazards where</u> <u>possible, and manage ESOH risks where hazards cannot be eliminated</u>. ... During system design, the PM shall <u>document hazardous materials</u> contained in the system and shall estimate and plan for the system's demilitarization and safe disposal.

MIL-STD-882D, Ch 1 (draft)

- Eliminate or reduce risk through alternate designs and materials
- Manage life cycle risk

Example Sustainability Factors (Impact Categories in Life Cycle Assessment)

Acquisition, Technology and Logistics

Toxic Chemicals & Materials Use

Energy Use

Greenhouse Gas Emissions

Noise

Ozone Depletion

Waste Production

Water Use

Land Use

What LCA Can Do

- Develop systematic evaluation of environmental consequences associated with a given product
- Compare impacts between two or more products/systems
- Quantify environmental releases to air/water/land in relation to each life cycle stage
- Identify impacts of a specific process
- Inform design
- Quantify uncertainty in product/system choice