
NDIA Paper:
Use of a Model-Based Approach to Minimize System

Development Risk and Time-to-Field for New Systems

Wagner, Brockwell, Daniels, Loesh, Gosnell

09 October, 2010

Overview

• Who we are – AMRDEC Software Engineering Directorate (SED)

• Overview of current state of project development with
statement of the problem

• Statement of Problem: Some Significant Root Causes

• Solutions to Avoid/Solve the Problem to Achieve Project
Success in Minimal Cycle Time

• The process – organization, structure, workflow

• Demonstration & metrics from two SED projects

• Summary & Conclusion

Abstract
• The DOD industry is constantly seeking ways to decrease the time-to-field for new technology and improved

systems to meet war fighter needs. But instead of decreased cycle-times, often development times are increased
due to new requirements for system information assurance, safety, interoperability, and other technology and
certification issues. Increasingly, standards for information assurance and safety certification require the early
involvement of specialized safety and IA teams in the development process. An increased number of evaluation
and test artifacts must also be produced by product development teams. These additional, required artifacts add
substantially to system development time and costs.

• As a result, the Army AMRDEC Software Engineering Directorate (SED) is increasingly asked to provide help in
developing systems with full engineering rigor, while achieving lower system life-cycle costs and shorter time-to-
field schedules that cannot be achieved using other formal acquisition strategies. SED has met the need using an
integrated, model-based development approach. We are applying state-of-the-industry modeling and
requirements management/development tools and technologies to shorten development times, improve system
and software reliability, and satisfy increased requirements for system safety (e.g. DO-178B), security (e.g. EAL-6),
and interoperability. Code generation algorithms provided by modern UML-based modeling tools can be tailored
to meet the coding guidelines imposed by standards for software safety. Additionally, requirements and design
documents can be generated more reliably, and with substantially reduced cost and schedule impact. Early
requirements and system architecture verification is achieved through model execution, thus correcting errors
early in the development cycle and avoiding associated schedule impacts. The net effect is a shorter time-to-field
development cycle, while retaining a high degree of engineering rigor and compliance with SED’s mature
processes.

• This paper discusses the approach and the results achieved using it to develop a high-risk, short-lead time, fielded
system.

Overview

• Who we are – AMRDEC Software Engineering Directorate (SED)

• Overview of current state of project development with
statement of the problem

• Statement of Problem: Some Significant Root Causes

• Solutions to Avoid/Solve the Problem to Achieve Project
Success in Minimal Cycle Time

• The process – organization, structure, workflow

• Application & Metrics from two SED projects

• Summary & Conclusion

AMRDEC SED Introduction:
Who we are and what we do

• We are the U.S. Army Aviation and Missile Research, Development, and
Engineering Center (AMRDEC) Software Engineering Directorate (SED).

• We work to support a very diverse set of engineering life cycle areas:
– Technology Development (Pre-Milestone A & Pre-Milestone B)
– System life-cycle management (Post-Milestone C)
– Formal System Development (Milestone B to Milestone C)
– System Verification, Validation, Certification, Qualification (Milestone C transition)

• Project Role Varies
– Function as Materiel Developer of Fielded and Support Capabilities
– Function in Support of Acquisition Agent (PM) to Assure Project Success
– Act as Supporting Independent Qualification/Certification/Integration Agent
– Operate In-house Facilities in Support of System Operations and Use

• Projects Span Full Range of Size
– Projects range from 2-3 engineers to 2-3 hundred engineers
– Project development products from few thousand SLOC to almost 10 million SLOC

AMRDEC SED Introduction:
Nature of Our Programs

• Projects Span Full Spectrum of Army Strategic & Tactical
Capabilities
– Communications (VMF Parser, JTRS, tactical communications)
– Common Infrastructure (ASE, Common Radio Control, SOSCOE, others)
– System Exploration and Architecture Support
– Assets for Integration Qualification, Certification, Interoperability Testing

(Interop Lab)
– Aircraft SILs, Aviation Support, and Avionics Development (ASIF, SILs, ANMP

IEC,MFOQA)
– Ground Launchers (MLRS, NLOS, THAAD)
– Missiles
– Strategic and Tactical Radar (SBX, other)
– Specialty Avionics (Survivability, Situation Awareness, Navigation & Control,

CBM)
– Command & Control (JBC-P, others)
– Specialty Projects

Extremely Diverse & Full Spectrum SE Capabilities for Equally Diverse Set of Projects
Represents Significant System Engineering Challenges

Overview

• Who we are – AMRDEC Software Engineering Directorate (SED)

• Overview of current state of project development with
statement of the problem

• Statement of Problem: Some Significant Root Causes

• Solutions to Avoid/Solve the Problem to Achieve Project
Success in Minimal Cycle Time

• The process – organization, structure, workflow

• Application & Metrics from two SED projects

• Summary & Conclusion

Statement of the problem

• The time to field new systems is, more often than not, unnecessarily long

• Designs often don’t meet the needs when fielded

• To compound the problem typical embedded systems are increasing in
complexity at exponential rate

• And all too often even with long program schedules, programs don’t meet
planned milestones.
– This is further complicated by technical partners getting out of synchronization

on large multi-development teams

• It is not often realized that there are actually two development efforts
being executed for each system being developed:
– The actual System Under Development (SUD)

– The integration and test system

– The second system is as (if not more) important but is often treated with
substantially less rigor and focus

– The test system must accompany the system into deployment as part of the
necessary life-cycle support infrastructure

Statement of the problem
(Continued)

• System integration and verification times are typically excessive and
fraught with rework - which further compounds schedule achievement.

• Certification times required for fielding and deployment often cause
schedules to slip. Many DOD systems being fielded now require
certification for more than just qualification purposes:
– Airworthiness

– Validation/Qualification

– IA/security

– Safety

– Interoperability

• There are other problems too numerous to mention but the bottom line
is:

It takes too long to get systems into hands of the soldier

Exponential Growth of System Complexity*

* System Architecture Virtual Integration: An Industrial Case Study,
November 2009, TECHNICAL REPORT CMU/SEI-2009-TR-017 ESC-TR-2009-017

The Development “V”:
Errors Introduced in Decomposition
Cause Rework during Composition

Acquisition/User
Responsibility

Developer
Responsibility

Concept Of
Operation &

Mission Needs
Statement

Unit Test

System Spec,
Sys Eng Plan,

Cost, Schedule,
SOW

System Rqmts in
Operational

Context

System
Development

Rqmts

Top-Level Design
Rqmts

H/W & S/W
Rqmts

System Build
(H/W & S/W Development)

System
Integration

& Test

System
Validation &
Certification

System
Verification

System
Operation and
Deployment

(A/C Integration)

Lifecycle
Management &

Sustainment

System Validation/Certification
Test Plan & Execution

System Verification Test
Plan & Execution

Control Gate Control Gate

Control Gate

System Integration
Plan & Execution

Control Gate

Control Gate

Control Gate

CDR

SRR

PKO

TRR

VTRR

PDR

UTRR

Detailed Design
Rqmts

H/W & S/W
Integration

Control Gate

Control Gate

Control Gate

Control GateUnit Test
Plan

I&TRR

HSI Test
Plan & Execution

PCA/FCA

Overview

• Who we are – AMRDEC Software Engineering Directorate (SED)

• Overview of current state of project development with
statement of the problem

• Statement of Problem: Some Significant Root Causes

• Solutions to Avoid/Solve the Problem to Achieve Project
Success in Minimal Cycle Time

• The process – organization, structure, workflow

• Application & Metrics from two SED projects

• Summary & Conclusion

Root Cause 1:
Error Propagation During Decomposition

• System development is typically characterized notionally by the “V” even where
non-waterfall methods are used.

– It is a set of “black box” to “white box” design synthesis iterations, each iteration comprising a
“decomposition”. Iterative decompositions are performed until the system design is specified
to a level appropriate to begin building the lowest level system elements. This is called “going
down the decomposition side of the V”

– A set of “composition”, integration, and verification activities, starting at the lowest level
elements, is performed to ensure that the finished product meets it’s specification at each
level. This iterative “composition” takes place at successively higher levels as the system is
integrated and tested. This is sometimes called “coming back up the composition side of the
V”

– Errors creep into each and every design synthesis iteration – practically impossible to avoid!

– And these errors are typically not detected until the composition activities of integration and
verification testing, when correcting them is the MOST EXPENSIVE

Root Cause 2:
Immature Test Environment at Start of Composition

• During each iteration of the design synthesis activity, when a black-box is
decomposed into white-box elements and associated requirements, the
resulting requirements are traced up to those of the associated black box

– Thus a full set of the required bi-directional requirements traceability links are generated.

• A set of requirements is generated for testing each of the resulting white box
elements thus creating a set of horizontal requirements links to the test
capabilities that will be needed later.

– Elements of the project Integration & Test (I&T) work products are critical for testing a wide
spectrum of attributes: safety, reliability, IA/security, performance, interoperability, other.

– The test system (capabilities, labs, fixtures, design requirements, test specs, test procedures,
etc) must be developed in parallel with the development of the SUD.

– The I&T work products are typically not matured early by synergistically using them to
evaluate the early “bottoms up” prototypes.

– Failing to develop a mature test infrastructure and/or vetting it BEFORE coming up the
composition side of the V causes EXPENSIVE and TIME CONSUMING
schedule impacts during the test sequences later in the project.

Root Cause 3:
Insufficient Design Trade Analyses Cause Faulty Designs

• Due to the labor-intensive nature of the additional efforts to perform REAL
risk reduction and the required design trade analysis (which often requires
prototyping) the system decomposition does not proceed in a way that
allows the effective achievement of the required Measures of Effectiveness
(MOE s)/Measures of Performance (MOPs). Redesign often occurs later in
the development phase as a result of poor early design decisions.

– During composition, rework is caused by finding errors in system implementation activities
as well as by finding errors in DESIGN. Design errors are substantially more expensive
than implementation errors

• If design trade analyses are performed by prototype development, then the
associated risks are mitigated. BUT:

– Prototypes tend to be very expensive and prone to failure due to nature of developing
hardware and software early in a less structured development environment

– Plus these prototypes are usually throw-away since they don’t meet
requirements for safety, security, reliability, etc.

– Thus additional work must be done associated with bringing the
“proof of concept” prototypes up to objective system quality

Root Cause 4:
Certification/Qualification Issues Discovered Too Late

• Software source code is usually not available early enough in the project
to get early assessments of software compliance with coding standards for
safety, reliability, security, and information assurance.

– When deferred until later in the development activities when software is available,
rework is required to correct compliance issues and, in many cases, this rework causes
redesign and substantial impacts to development schedules.

– Failing to develop software to objective requirements necessary for
certification/qualification causes EXPENSIVE and TIME CONSUMING schedule impacts
due to software redesign, retest, reintegrate (extensive rework).

Root Cause 5:
Project Schedule Critical Paths are not Optimized Properly

• Often system development schedules are not sufficiently parallelized to
take early advantage of system capabilities that are well known.

– Projects often do not take advantage of efforts to parallelize development that result in
early system capabilities. Failure to pick the low hanging fruit early does not take
advantage of using the well understood system capabilities to mature understanding of
more difficult or high-risk system areas.

– Problems associated with this are that early in the project mature development and test
infrastructure can sometimes inject errors and immaturity in areas of criticality (safety,
security, information assurance, etc)

– Same problems with early prototyping efforts

– This problem is related to the lack of effective Risk Management (RM)

– Should always go Top-Down and Bottom-Up concurrently and those efforts should be
risk-mitigation-driven

Root Cause 6:
Automated Development Tools not Often Leveraged

• Modern tools for system development (system architecture, design,
performance, complex electronics) that could drastically shorten project
timelines when they are integrated with the engineering processes of the
enterprise are not often used.

– Tools that provide automation are not typically used and …

– When modeling and development tools are used they typically are used in a “stove-
piped” manner and not integrated with each other or into the project’s system
engineering processes

– This is the old “John Henry and his sledge hammer” syndrome: manually generating
software only because it is trusted and the results (however costly and time consuming)
are known.

– Manually attacking system engineering tasks further slows things down and typically
injects additional errors.

– Cannot possibly test comprehensively with manual, discrete analyses and test efforts

Impact of Error Propagation
During Decomposition Phases*

* System Architecture Virtual Integration: An Industrial Case Study,
November 2009, TECHNICAL REPORT CMU/SEI-2009-TR-017 ESC-TR-2009-017

Summary:
Problems in Achieving Shortened Development Cycles

• It should be evident by now that significant cost and schedule
impacts are due to:
1. Error propagation during decomposition: Errors are not detected until the

composition activities (integration and verification testing) - REWORK

2. Untested and immature integration, verification and test capabilities, and
work products (such as test specs, test case design, test procedures) –
SLOWS DOWN INTEGRATION AND VERIFICATION TESTING

3. Insufficient Design Trade Analyses which cause faulty designs resulting in
expensive rework later

4. Certification/Qualification Issues Discovered Too Late

5. Lack of properly making project activities parallel where possible – DON’T
WAIT UNTIL THE LAST MINUTE TO DEVELOP A CAPABILITY THAT IS WELL
UNDERSTOOD

6. Lack of properly recognizing and mitigating system risks early cause delays
resulting from “mini-cycles within major development cycles” – LEADS TO
MORE REWORK

7. Failure to leverage automated techniques resulting in development efforts
that are too often labor intensive and result in more error injection

Overview

• Who we are – AMRDEC Software Engineering Directorate (SED)

• Overview of current state of project development with
statement of the problem

• Statement of Problem: Some Significant Root Causes

• Solutions to Avoid/Solve the Problem to Achieve Project
Success in Minimal Cycle Time

• The process – organization, structure, workflow

• Application & Metrics from two SED projects

• Summary & Conclusion

Solutions for Achieving Shortened
Development Cycles

• Problems can be addressed by:
1. Eliminating design/decomposition error propagation by fully testing and vetting

system design requirements in their operational context at EVERY level of
requirements analysis and design synthesis USING A FULLY FUNCTIONAL SYSTEM AND
OPERATIONAL ENVIRONMENT SIMULATION – THE SYSTEM MODEL

2. Fully parallelizing project development activities by performing design trade analyses
in parallel with the design synthesis (decomposition) activities at every level using
THE SYSTEM MODEL instead of costly physical prototypes.

3. Vetting “black box” requirements BEFORE beginning decomposition to “white box”
elements by testing within THE SYSTEM MODEL, which represents the combined
behavior of the “white box” elements within THE SYSTEM ENVIRONMENT MODEL

4. Using a modeling tool to generate THE SYSTEM MODEL that contains automatic code
generation capabilities, so that as the model is verified at each design iteration the
software source can be given to supporting specialty teams assessing certification.
Code generation rules can be modified to meet required standards for security (EAL-4,
EAL-6, DO-178, etc)

5. Developing the integration and test infrastructure and verifying its operation by
concurrently developing THE SYSTEM OPERATIONAL ENVIRONMENT MODEL with THE
SYSTEM MODEL of the system under development.

But…

• We have characterized some of the problems with development
failures, and we are addressing them

• At the heart of our solution is a model-based architecture
development approach to solve these complex problems.

• But it is not as simple as just buying a model-based development
tool and training staff and letting them go.
– The tool must be integrated into the enterprise processes and used to

support the needs of the project
– There must be a strong, rigorous, and disciplined system engineering

set of processes to supplement the tool.
• Other salient aspects of the solution:

– Use of a strong interdisciplinary team to support concurrent
engineering processes and practices.

– Making parallel as much of the development as possible to avoid long
critical paths in program execution

– Utilization of a top-down and bottom-up engineering effort that
strongly leverages prototype development to support risk
management (RM) and decision, analysis, and resolution (DAR)

Integrated Model-Based Development
Overview

Developer
Responsibility

Architectural
Candidate 1

Architectural
Candidate 2

Architectural
Candidate N

Acquisition/User
Responsibility

Operational
Requirements

MOEs/MOPs

TPMs/KPPs

System
Attributes

System Environment
(Complete System

Operational Context)

System

Test Scenarios
and Cases

Test Results &
Performance

Measures

System Model
Behavioral and Performance Based

Down-Selected Functional
Architectural Solution

Design Trade Analyses (Design & Risk Driven)

Use Cases

Sequence Diagrams

State Transition Diagrams

Activity Diagrams

Prototype

H/W

Prototype

S/W

Analysis

Model

Establish values of
model parameters
to support model

for execution to
Support Design

Trades

Start here!

Overview

• Who we are – AMRDEC Software Engineering Directorate (SED)

• Overview of current state of project development with
statement of the problem

• Statement of Problem: Some Significant Root Causes

• Solutions to Avoid/Solve the Problem to Achieve Project
Success in Minimal Cycle Time

• The process – organization, structure, workflow

• Application & Metrics from two SED projects

• Summary & Conclusion

SED’s Model-Based
Development Approach

• Our solution to developing a complex system is to employ a model-based
approach to develop and mature a system model (simulation) from the
earliest point of a project (even during acquisition)
– No Missile or Aircraft systems will be developed without a simulation
– Apply the same principals but use a modern, well-supported suite of tools that

result in
• An executable system at every level
• Highly integrated with other development tools
• Can auto generate software to support embedded prototype development

• For several projects the IBM Rhapsody tool suite and the associated
Harmony SE workflow have functioned as the core around which to
develop a system and environment model to achieve our project goals
– Use this with either UML or SysML
– Acts as core around which to integrate other products (MATLAB, COTS Graphics

Packages, Complex Electronics modeling tools)
– Supports concurrent test environment modeling and integration
– Supports real-time development, integration, verification testing
– Leads right into formal verification testing

• Does NOT replace the enterprise system engineering processes!!

Continuous vs. Discrete Testing

• Continuous vs. Discrete Testing During “Decomposition”
Greatly Shortens Formal “Composition” Testing

• Environment/Platform Modeling and Testing begins DURING
REQUIREMENTS ANALYSIS!

• Continuous, iterative, model-based testing is conducted as the SUD model
is matured.

• The Environment/Platform model (i.e. the SUD Test environment) evolves
as the SUD model evolves

• Key Point: Continuous modeling/testing begins before project kickoff,
continues throughout the integration/test activities (right side of the “V”).

• This approach differs from the classical “discrete” testing approach, where
formal tests are deferred to the right side of the “V”

Must mature the test capabilities before starting
“composition” formal testing AND eliminate propagation of
errors

Model-Based Concurrent
Engineering Processes

Time

Cost of
Design
Change

Increase design stability
by requirements validation
and systems analysis prior
to implementation

System
Integration &

Test

System
Acceptance

HW/SW
Design

HW/SW
Implementation

Module
Integration &

Test

Systems
Analysis &

Design

Requirements-
Analysis

Performing requirements and design verification as early as possible, as
opposed to waiting until “composition” activities begin, reduces cost and
schedule risks.

Modeling is Used in Conjunction with Standard
System Engineering Process NOT Instead of It!

System Architecture
Model Development

Support Engineering
Trade Analyses

Model Refinement

Model Use for
System Test and

Verification

Requirements
Development &

Verification

System
Requirements

Generation
(from model)

Trace to Upper
Level

Requirements

Trace Horizontally
to Requirements

for Test

Refine and Update
Requirements

(to model)

Perform Coverage
Analyses

Develop Test Plans
& Requirements

(to model)

Perform Coverage
Analyses

System Modeling System Engineering

Iterate for Top-Level, Detailed
System Design & H/W, S/W Design

Perform
Architecture &
Design Trade

Analyses

Analysis Support Tools
(Matlab, Excel, others)

UML Modeling Tool (Rhapsody)

Model Development and Evaluation Activities

SUD
UML-based

Model

Host Platform
& Environment

UML-based
Model

Dynamic
I/F

Spec

Model Development Model Test, Evaluation,
& Requirements

Pathfinding

Test Data
Analysis

SUD, Environment Model Rqmts
Updates/Changes

UML Modeling Tool (Rhapsody)

SUD
UML-based

Model
Executable

Host Platform
& Environment

UML-based
Model

Executable

Dynamic
I/F

Execution

Test Data
Capture

Test &
Evaluation
Scenario
Models

Lab-Based (HWIL) SIL

Model Development and Evaluation Activities
Using Lab-Based Test Capabilities

UML Modeling Tool (Rhapsody)

SUD
UML-based

Model
Executable

Host Platform
& Environment

UML-based
Model

Executable

Dynamic
I/F

Execution

Test Data
Capture

Test &
Evaluation
Scenario
Models

Lab Integration with
System Hardware and
External Stimulation

Model Test, Evaluation, &
Requirements Pathfinding

Host Platform &
Environment

UML-based Model
Executable (Lab-Based
Functional Equivalent)

Host Platform H/W & H/W Emulators
(SUD Physical I/F)

Lab Test Infrastructure (Data
Capture, Test

Coordination/Synchronization

Test &
Evaluation
Scenario
Models

ISUD
UML-based

Model
Executable

Lab-Based (HWIL) SIL

Model Development and Evaluation Activities
Using Lab-Based Test Capabilities

UML Modeling Tool (Rhapsody)

SUD
UML-based

Model
Executable

Host Platform
& Environment

UML-based
Model

Executable

Dynamic
I/F

Execution

Test Data
Capture

Test &
Evaluation
Scenario
Models SUD

Prototype

A/C & Environment
UML-based Model

Executable (Lab-Based
Functional Equivalent)

Host Platform H/W & H/W
Emulators (SUD Physical I/F)

Lab Test Infrastructure (Data
Capture, Test

Coordination/Synchronization

Test &
Evaluation
Scenario
Models

Lab Integration with
System Hardware and
External Stimulation

Model Test, Evaluation, &
Requirements Pathfinding

Must Utilize Formal, Institutionalized
Enterprise Processes

(RM, DAR, Design Synthesis)

– Address Risks Early and Continuously
• Identify risks in Risk Management Plan by integrating Design Trade

Analyses formally into development
• Perform Design Trade Analyses early using the System Model using

prototypes to explore and mitigate risks
– Early prototypes should be executed in modeling environment FIRST
– Build necessary hardware and software prototypes using the model to

support maturity of the results
• Design decisions are supported by formal and rigorous Decision Analysis

and Resolution (DAR) processes
– Apply an Architecture Design Process that will:

• Test the seams of your system early and often
• Eliminate the most expensive defects - between architectural units

– Apply strong architectural modeling techniques
• Architectural design patterns to reuse best-practice architectures
• Strong architectures result in adaptable, robust systems

Formalize the Process

– Apply use case-driven development

– Apply a means of deriving design selection
• For all design activities must use the system MOEs/MOPs ->

TPMs/KPPs -> System Parameters in conjunction with design trade
analyses.

– Ensure the system completeness and correctness
throughout the engineering lifecycle.

– You can only test what you can execute, therefore
execute and test early and often.

– Separate logical and physical models - Reuse comes
largely from redeploying common logical models

Eliminate Costly Labor-Intensive
Development Efforts

– Apply Good Tools –
• Automation as a process improvement strategy can be made

quantitatively and economically superior to all of the others.

• Tools that will automate tasks required for effective Requirements
Management, Traceability, Validation, Verification, Implementation
and Test. Good tools help support an iterative or spiral process as well
as the ability to sustain a system throughout its life.

• Good Tools are cheap when integrated into enterprise processes , as
compared to conventional, manual approaches.

• For an independent UML 2.0 tool evaluation? Go to:
http://www.embeddedforecast.com/REDUML_0304.pdf

– For more information on Process Improvement Strategies go
to http://www.dacs.dtic.mil/techs

http://www.embeddedforecast.com/REDUML_0304.pdf�
http://www.dacs.dtic.mil/techs�

Example of a Model–Based
System Engineering Workflow*

Black Box Use Case Scenarios

Requirements Diagram

Black Box Use Case Model,
System Level Operational Contracts

White Box Use Case Model
Logical Subsystem Operational Contracts

Deployment Model,
HW/SW allocated Operational Contracts

R
eq

ui
re

m
en

ts
 R

ep
os

ito
ry

Test D
atabase

White Box Use Case Scenarios

System Use Cases

Links providing traceability
to original requirements

Physical Subsystem
Use Case Scenarios

ICD
HW/SW Design

System Architectural Design

U
se

 C
as

e
An

al
ys

is
Abstracted
Use Case Models

System Functional Analysis

Requirements Analysis

Definition of System Use Cases

Updated Logical Subsystem OpCons

Requirements Capture

Definition of Phys.SS Use Cases

HW/SW Trade Off

Physical Subsystem Use Cases

System Use Cases

Logical Subsystem OpCons

Use Case Consistency Analysis

White Box Analysis

System Level
OpCons

Black Box Analysis

Use Case 1

HW/SW Specs

* From the IBM Rational HARMONY® Systems Engineering Workflow

Overview

• Who we are – AMRDEC Software Engineering Directorate (SED)

• Overview of current state of project development with
statement of the problem

• Statement of Problem: Some Significant Root Causes

• Solutions to Avoid/Solve the Problem to Achieve Project
Success in Minimal Cycle Time

• The process – organization, structure, workflow

• Application & Metrics from two SED projects

• Summary & Conclusion

11/4/2010 38

Actual Project Characteristics
(Project X)

• Army Embedded Communications Device Program
• Work discussed here includes System Specification (SS)

Requirements Analysis, Functional Analysis, Functional
Decomposition, Development of Functional Test Model and
Functional SUD Model (in Rhapsody), Requirements Allocation to
Functional Blocks, and generation of a Prime Item Development
Spec.

• 45 person effort (includes all engineering, management, and
support)

• 6 system architects
• Using Rhapsody & Harmony for Systems Engineering (SE) workflow
• Project is ongoing

11/4/2010 39

Project X Requirements Sources

• Created System Specification from Legacy Documents
• 47 legacy use case docs
• Legacy hardware spec
• 2 Legacy SW Specs
• Platform Implementer’s Guide
• Legacy SW Code
• SOW
• Emails

11/4/2010 40

Project X Work Products Generated to Date
(Project is On-Going)

• Prime Item Development Spec (PIDS) From System Spec
• Functional Analysis

• 7 Use Cases (from original “47 use cases”)
• 6 System Architects Developed Independent UC Models

(~ 3 Month Effort)
• 350 Derived Requirements Discovered (captured in PIDS)
• 50 SS Requirements Holes Identified during functional model

simulation analysis
• Derived & SS Requirements vetted &captured in DOORS
• PIDS (top-level design) Document Generated from DOORS
• Successful System Functional Review

Project X Continuous Test Approach
Identified Errors During Design

• The Continuous Test Approach Identified Errors During
Requirements/Functional Analysis Phase of Development

• Modeling the Test Environment concurrently with, and independently from,
requirements/systems model, and executing them against each other,
uncovers interface discrepancies and identifies uncovered requirements
early (during requirements development phase).

• A significant interface issue was discovered and corrected DURING
REQUIREMENTS ANALYSIS phase via testing the FUNCTIONAL Rhapsody
model using the FUNCTIONAL Test Environment Rhapsody model.

• A significant requirements discrepancy was discovered via FUNCTIONAL
SUD Rhapsody Use Case model simulation.

• Development and Continuous Execution of Test Models Concurrently with
SUD Model Development Reduces Error Propagation while it is still “Cheap
to Fix the Errors”

• Test Environment Modeling must begin ASAP, and must be matured with
the system (SUD) and its environment models.

Project X Lessons Learned

• Concurrent development and implementation of the Test Environment
model saves time by identifying errors before they can be propagated.

• Error propagation is mitigated early, (even during requirements analysis) using
concurrent, Model Based Testing to drive SUD model

• Harmony work flow standardizes work products

• Don’t attempt this without training
• Even with training, continued mentoring is vital
• Training is necessary but not sufficient
• This approach may not be cost effective if it is not institutionalized (cost may be

prohibitive if only used on one project)

• Must integrate model-based development activities into standard enterprise system
engineering – Rhapsody Harmony doesn’t replace system engineering processes.

• Independent SUD functional model development per use case followed by integration
of models is labor intensive

• Rhapsody Harmony SE wizards provide significant productivity increases, but…
• If you don’t understand what the wizards do… trouble

• Time is saved when transitioning from Systems Engineering to SW Engineering due to
a common modeling tool suite (Rhapsody) and language (SysML & UML)

Actual Project Characteristics
(Project Y)

• An embedded logistics/RAM fielded support device
– System is to be developed for an initial system
– Then adapted to support all Army-related systems
– Need good architecture

• Life cycle cost optimization is essential
• System will be used and adapted for new systems for many years
• Initial development is two-year effort with three system builds
• Currently working on readying system Build 0

– Build 1 schedule is EXTREMELY aggressive – only a one year
development to early fielding/deployment with full
security/IA certification!

– Couldn’t get there without support of automated
development tools during design, verification, certification

Actual Project Status/Metrics
(Project Y)

• Model development proceeding as planned with good results
– Have identified twelve Use Cases (see next chart)
– Have reviewed and vetted primary Use Cases (for initial project system

build) with stakeholder
– Have identified all nominal and off-nominal scenarios and created

sequence diagrams and state transition diagrams
– Implemented all data structures defined in the system ICD via data

object and message class definitions
– Have defined object oriented and fully abstracted physical architecture

(non-functional requirements) and they are now implemented in the
model along with the functional requirements

– Performance requirements will be forthcoming
– Currently have executable model representing 15K SLOC

(debug/animated version) and 10K SLOC release version from
approximately 200 man-hours total team expenditure on model effort

– Already vetting our source code with the IA team with good results

SO FAR – SO GOOD!!!!

Project Y System Use Case Diagram

Overview

• Who we are – AMRDEC Software Engineering Directorate (SED)

• Overview of current state of project development with
statement of the problem

• Statement of Problem: Some Significant Root Causes

• Solutions to Avoid/Solve the Problem to Achieve Project
Success in Minimal Cycle Time

• The process – organization, structure, workflow

• Application & Metrics from two SED projects

• Summary & Conclusion

Model-Based
Concurrent Engineering Processes

Time

Cost of
Design
Change

Increase design stability
by requirements validation
and systems analysis prior
to implementation

System
Integration &

Test

System
Acceptance

HW/SW
Design

HW/SW
Implementation

Module
Integration &

Test

Systems
Analysis &

Design

Requirements-
Analysis

Performing requirements and design verification as early as possible, as
opposed to waiting until “composition” activities begin, reduces cost and
schedule risks.

Integrated Model-Based Development
Overview

Acquisition/User
Responsibility

Developer
Responsibility

Concept Of
Operation &

Mission Needs
Statement

Unit Test

System Spec,
Sys Eng Plan,

Cost, Schedule,
SOW

System Rqmts in
Operational

Context

System
Development

Rqmts

Top-Level Design
Rqmts

H/W & S/W
Rqmts

System Build
(H/W & S/W Development)

System
Integration

& Test

System
Validation &
Certification

System
Verification

System
Operation and
Deployment

(A/C Integration)

Lifecycle
Management &

Sustainment

System Validation/Certification
Test Plan & Execution

System Verification Test
Plan & Execution

Control Gate Control Gate

Control Gate

System Integration
Plan & Execution

Control Gate

Control Gate

Control Gate

CDR

SRR

PKO

TRR

VTRR

PDR

UTRR

Detailed Design
Rqmts

H/W & S/W
Integration

Control Gate

Control Gate

Control Gate

Control GateUnit Test
Plan

I&TRR

HSI Test
Plan & Execution

PCA/FCA

Summary and Conclusion

• Must have formalized enterprise processes for system
development
– Must use a strong Integrated Product Development (IPD) team
– Must have engineering team working together from the beginning of the project
– Involve the specialty engineering team elements early (Safety, RAM, Security/IA,

T&E, CM, QA/QC, etc)

• Must supplement system engineering capabilities and processes
with a suite of integrated tools to provide automation
– Must use a variety of general and specialized tools for each unique attribute of

the system
– Must integrate the tools with a core modeling tool supported by an industry

standard language (UML, SYSML)
– The core modeling tool must support integration and interoperability of

supporting models such as MATLAB Simulink, STK, Complex Electronics,
Architecture (AADL)

– We have integrated Rhapsody and the Harmony SE workflow into our enterprise
processes and used them to good effect to meet project needs.

Summary and Conclusion (Continued)

• Must use rigor and focus to eliminate the Six Root Causes of
development problems and schedule killers

• Must use a Model-Based Development approach to develop a
fully functional model (simulation) of the system and its
operational environment
– And use the model to support formal RM, DAR, Engineering Design Trade

Analyses
– Must ensure design quality integrating system MOEs/MOPs into the design in a

formal and rigorous manner

• Must utilize the System and Environment Model to integrate,
verify, mature the system suite of integration and verification
test capabilities BEFORE starting the formal Composition
activities on the backside of the “V”

Questions?

	NDIA Paper:�Use of a Model-Based Approach to Minimize System Development Risk and Time-to-Field for New Systems
	Overview
	Abstract
	Overview
	AMRDEC SED Introduction: �Who we are and what we do
	AMRDEC SED Introduction: �Nature of Our Programs
	Overview
	Statement of the problem
	Statement of the problem �(Continued)
	Exponential Growth of System Complexity*
	The Development “V”: �Errors Introduced in Decomposition �Cause Rework during Composition
	Overview
	Root Cause 1: �Error Propagation During Decomposition
	Root Cause 2: �Immature Test Environment at Start of Composition
	Root Cause 3: �Insufficient Design Trade Analyses Cause Faulty Designs
	Root Cause 4: �Certification/Qualification Issues Discovered Too Late
	Root Cause 5: �Project Schedule Critical Paths are not Optimized Properly
	Root Cause 6: �Automated Development Tools not Often Leveraged
	Impact of Error Propagation �During Decomposition Phases*
	Summary: �Problems in Achieving Shortened Development Cycles
	Overview
	Solutions for Achieving Shortened �Development Cycles
	But…
	Integrated Model-Based Development �Overview
	Overview
	SED’s Model-Based �Development Approach
	Continuous vs. Discrete Testing
	Model-Based Concurrent �Engineering Processes
	Modeling is Used in Conjunction with Standard �System Engineering Process NOT Instead of It!
	Model Development and Evaluation Activities
	Model Development and Evaluation Activities �Using Lab-Based Test Capabilities
	Model Development and Evaluation Activities �Using Lab-Based Test Capabilities
	Must Utilize Formal, Institutionalized �Enterprise Processes �(RM, DAR, Design Synthesis)
	Formalize the Process
	Eliminate Costly Labor-Intensive �Development Efforts
	Example of a Model–Based �System Engineering Workflow*
	Overview
	Actual Project Characteristics�(Project X)
	Project X Requirements Sources
	Project X Work Products Generated to Date �(Project is On-Going)
	Project X Continuous Test Approach �Identified Errors During Design
	Project X Lessons Learned
	Actual Project Characteristics�(Project Y)
	Actual Project Status/Metrics�(Project Y)
	Slide Number 45
	Overview
	Model-Based �Concurrent Engineering Processes
	Integrated Model-Based Development �Overview
	Summary and Conclusion
	Summary and Conclusion (Continued)
	Questions?

