

#### JOG SYSTEM ENGINEERING GRAND SYSTEMS DEVELOPMENT TRAINING PROGRAM PRESENTATION

# A SIMPLE PRESCRIPTION FOR REQUIREMENTS SUCCESS



## Who Is Jeff Grady?

**CURRENT POSITION** President, JOG System Engineering System Engineering Consulting and Education Firm PRIOR EXPERIENCE U.S. Marines **General Precision, Librascope Division Customer Training Instructor, SUBROC and ASROC ASW Systems** Ryan Aeronautical Company (later Teledyne Ryan Aeronautical) Field Engineer, AQM-34 Series Special Purpose Aircraft **Project Engineer, System Engineer, Unmanned Aircraft Systems General Dynamics, Convair Division** System Engineer, Cruise Missile, Advanced Cruise Missile **General Dynamics Space Systems Division Functional Engineering Manager, Systems Development Department** FORMAL EDUCATION SDSU, BA Math; UCSD, Systems Engineering Certificate; **USC, MS Systems Management with Information Systems Certificate** First Elected Secretary, Founder, Fellow, ESEP INCOSE System Requirements Analysis (2), System Integration, System Validation AUTHOR and Verification, System Engineering Planning and Enterprise Identity, System Engineering Deployment, System Verification, System Synthesis, System Management

#### **Systems Jeff Grady Worked On**



USN/Librascope ASROC/SUBROC Computer Systems



USAF/GD Convair AQM 129 Advanced Cruise Missile



**USAF/GD Atlas Missile** 



USAF/Ryan AQM-81 Firebolt



#### **Ryan Aeronautical War Birds**



#### USAF/Ryan Models 147G, NX, H, and J at Bien Hoa, SVN



USAF/Ryan AQM-34L Tom Cat 58 Combat Missions



U.S. Navy/Ryan Model 147SK



USAF/Ryan BGM-34C

 $\mathbf{C}$ 

## **The Prescription Plan**

- Introduce ideas to be applied
- Program preparation steps
  - Preparation process overview
  - Specification templates
  - Organizational structure and responsibilities
  - Modeling preferences and modeling work product capture
  - Specification map
- Program implementation steps
- Modeling overview
- Traditional Structured Analysis as a Universal Architecture Description Framework (UADF)
  - RAS-Complete to collect the modeling results
  - MSA and PSARE teamed up as a UADF
  - UML teamed up with SysML as a UADF
- Specification publishing and a look into the future

#### **Requirement Defined**

- Something wanted or necessary.
  Something essential to the existence or occurrence of something else.
- A necessary characteristic or attribute of some thing, entity, or item.

88208

#### What is a Specification?



A specification contains all of the requirements for a given item.



#### **A Current Reality**

- Many system engineers and managers have the opinion that their organization does not perform requirements analysis and specification publishing well.
- Unfortunately, many of these engineers and managers are right about their organization's performance in this area.
- There seems to be a void of knowledge among these engineers and managers about how to avoid this problem, about how to bring about an improvement in the performance of their organization.

#### **Some Elementary Logic**

- If what you are now doing is not working well, it stands to reason that if you keep doing what you are doing then the outcome will continue to be unsatisfactory (a variation on the definition of insanity to expect otherwise)
- You may have to undergo a change in how you accomplish this work.
- The purpose of this presentation is to offer one effective route to correcting the problem.
- There may be other ways to fix the problem as well but this one will work.

#### **The Top-Level Program Structure**

- The development organization should follow a pattern of first defining the requirements in a set of performance specifications, one for each entity in the system. These system and item specifications must also include the system test and evaluation and item qualification verification requirements respectively.
- Step two is to accomplish synthesis in a trio of transformations: (1) requirements to design solutions, (2) design solutions to material acquisition, and (3) available materials to manufactured product.
- When the design for an item is essentially complete, develop a detail specification for use as the basis for item product acceptance verification subsequent to manufacture.

## **The Top-Level Program Structure**

- The third program step is to verify that the manufactured product satisfies the requirements in the specifications that should have driven the design.
  - System Specification content drives system development test and evaluation plans and procedures.
  - Item Performance Specification content drives item qualification verification plans and procedures.
  - Item Detail Specification content drives item acceptance test plans and procedures accomplished on every production article.
- Accomplish the three fundamental steps within a sound management infrastructure

#### The System Development Sequence In Summary



#### **Define the problem**

- Specifications
- Solve the problem
  - Design, procurement/material, and manufacturing
- Prove it
  - Verification
- All within a sound technical management infrastructure



## **The Prescription - Preparatory Steps**

- 1. Establish a written criteria of acceptability for all specifications created.
- 2. Select a set of specification templates including one for every kind of specification the enterprise will ever have to prepare on a program.
- 3. Base requirements definition on the use of models.
- 4. Select a set of models that form a universal architecture description framework (UADF) that is comprehensive relative to system, hardware, and software entities.
- 5. Coordinate the specification template paragraph structures with responsible functional departments and analytical models that will be applied in identifying specification content.

#### **The Prescription - Preparatory Steps**

- 6. Coordinate the specification template paragraphing structure with the models used such that all of the requirements derived from one model fall into one portion of the specification paragraphing structure.
- 7. Craft a template for a structured analysis modeling work product capture document within which a program structured analysis model base can be configuration managed – System Architecture Report (SAR).
- 8. Train personnel in the application of assigned models such that they arrive on a program ready to accomplish assigned work. A common process on all programs can be a part of this by encouraging process repetition.

#### **The Prescription - Implementation Steps**

- 1. Where multiple modeling sets are employed in an enterprise, determine models that will be applied on the particular program for system, hardware, and software entities. Work toward a common set (a UADF).
- 2. Select templates for system, hardware, and software entity specifications.
- 3. Build a specialty engineering scoping matrix for the program and coordinate discipline expectations with team budget limitations.
- 4. Form a PIT that will accomplish system level structured analysis using selected models identifying the content of the system specification and specifications corresponding to the top level IPPT.

### **The Prescription - Implementation Steps**

- 5. Apply functional models to determine what the system and entities must do and how well they must do it. Coordinate performance requirements analysis with product entity and interface needs.
- 6. Apply models for interface, specialty engineering, and environmental requirements analysis.
- Each IPPT should come aboard with a specification and program planning complete for the entity for which they will be responsible.
- 8. IPPT continue lower tier structured analysis with appropriate models.
- Employ a program-wide RAS-Complete in a computer database to capture the requirements flowing from all of the models used.

### **The Prescription - Implementation Steps**

- 10. Employ a computer application that sets the RAS database filter to a particular product entity and part (performance or detail) and orders the database content by paragraph number so as to print a specification to screen or paper.
- 11. Apply sound risk management techniques and formally review all specification and changes for release.
- 12. Configuration manage released specifications and changes.
- 13. Require that every new specification and every change to a previously approved specification be reviewed and approved in response to a written criteria for acceptability.
- 14. Use the verification requirements in the system and item performance specifications as the basis for system DT&E and item qualification verification plans and procedures.

#### The Prescription - Implementation Steps

15. Maintain three-dimensional traceability (vertical, longitudinal, and lateral) to the extent possible.



#### **The Prescription in a Picture**



#### Universal Architecture Description Framework Approach





#### **MIL-STD-961E Specification Types**



# Requirements DocumentationPrincipal AssignmentsRESPONSIBILITY<br/>ASSIGNMENT



## Requirements Documentation Responsibilities by Element Type and Level



# A Template

#### **Using the Six-Section Military Format as a Basis**

- 1 Scope
- **2** Applicable Documents
- **3 Requirements**
- **4** Verification
- 5 Packaging
- 6 Notes



| PARAGRAPH |                                   | RESPONSIBLE | PREFERRED                            | SAR |
|-----------|-----------------------------------|-------------|--------------------------------------|-----|
| NUMBER    | TITLE                             | DEPARTMENT  | MODEL                                | APP |
| 1         | SCOPE                             |             |                                      |     |
| 2         | APPLICALE DOCUMENTS               |             |                                      |     |
| 3         | REQUIREMENTS                      | D216-2      | -                                    |     |
| 3.1       | Requirements Driven Sources       | D216-2      | -                                    |     |
| 3.1.1     | Non-Modeling Sources              | D216-2      | -                                    |     |
| 3.1.1.1   | Customer Need                     | D216-2      | -                                    |     |
| 3.1.1.2   | Missions                          | D216-2      | Mission Analysis                     | Α   |
| 3.1.1.3   | Threat                            | D216-2      | Threat Analysis                      | В   |
| 3.1.1.4   | Ad hoc Sources                    | D216-2      | -                                    |     |
| 3.1.2     | Problem Space Modeling            | D216-2      | -                                    |     |
| 3.1.2.1   | Functional Flow Diagramming       | D216-2      | Functional Analysis                  | Α   |
| 3.1.2.2   | Functional Dictionary             | D216-2      | Functional Analysis                  | Α   |
| 3.1.2.3   | Requirements Analysis Sheet       | D216-2      | Functional Analysis                  | G   |
| 3.1.3     | Solution Space Modeling           | D216-2      | Constraints Analysis                 |     |
| 3.1.3.1   | Product Entity Modeling           | D216-2      | Product Entity Block<br>Diagramming  | С   |
| 3.1.3.2   | Interface Modeling                | D216-2      | Schematic Block<br>Diagramming       | D   |
| 3.1.3.3   | Specialty Engineering Modeling    | D216-2      |                                      | Е   |
| 3.1.3.4   | Environmental Spaces and Modeling | D216-2      | Environmental Modeling               | В   |
| 3.2       | System Capabilities               | D216-2      | Functional Analysis                  | Α   |
| 3.2.m     | Capability m                      | D216-2      | Functional Analysis                  | Α   |
| 3.2.m.n   | Performance Requirement n         | D216-2      | Performance Requirements<br>Analysis |     |

(c)

| PARAGRAPH<br>NUMBER | TITLE                                             | RESPONSIBLE<br>DEPARTMENT |                                    | SAR<br>APP |
|---------------------|---------------------------------------------------|---------------------------|------------------------------------|------------|
| 3.3                 | Interface Requirements                            | D216-2                    | Interface Requirements<br>Analysis | D          |
| 3.3.1               | Crossface Requirements                            | D216-2                    | Schematic Block Diagram            | D          |
| 3.3.2               | Innerface Requirements                            | D216-2                    | Schematic Block Diagram            | D          |
| 3.3.3               | Outerface Requirements                            | D216-2                    | Schematic Block Diagram            | D          |
| 3.3.4               | Government-Furnished<br>Property (GFP) Interfaces | D216-2                    | N-Square Analysis                  | D          |
| 3.4                 | Specialty Engineering<br>Requirements             | D216-2                    | Specialty Engineering<br>Modeling  | Е          |
| 3.4.1               | Reliability                                       | D216-4                    | Reliability Modeling               | Е          |
| 3.4.2               | Maintainability                                   | D216-4                    | Maintainability Modeling           | Е          |
| 3.4.3               | Availability                                      | D216-4                    | RAM Modeling                       | Е          |
| 3.4.4               | Deployability and<br>Transportability             | D231<br>D231              | Logistics Analysis                 | Е          |
| 3.4.5               | Logistics                                         | D231                      | Logistics Analysis                 | Е          |
| 3.4.5.1             | Maintenance                                       | D216-4                    | Logistics Analysis                 | Е          |
| 3.4.5.2             | Interchangeability                                | D231                      | Logistics Analysis                 |            |
| 3.4.5.3             | Supply                                            | D231                      | Logistics Analysis                 | Е          |
| 3.4.5.4             | Facilities and Facility<br>Equipment              | D231                      | Logistics Analysis                 | Е          |
| 3.4.5.5             | Personnel                                         | D231                      | Logistics Analysis                 | Е          |
| 3.4.5.6             | Training                                          | D231                      | Logistics Analysis                 | Е          |
| 3.4.6               | Safety                                            | D216-5                    | Safety Hazard Analysis.            | Е          |
| 3.4.7               | Human Factors Engineering                         | D216-5                    | Human Engineering<br>Analysis      | Е          |

 $(\mathbf{C})$ 

| PARAGRAPH<br>NUMBER | TITLE                                              | RESPONSIBLE<br>DEPARTMENT |                                            | SAR<br>APP |
|---------------------|----------------------------------------------------|---------------------------|--------------------------------------------|------------|
| 3.4.8               | Security and Privacy                               | D216-6                    | System Security Analysis                   | E          |
| 3.4.9               | Electromagnetic Radiation                          | D213-3                    | Electromagnetic Analysis                   | Е          |
| 3.4.10              | Lightning Protection                               |                           |                                            | Е          |
| 3.4.11              | Producibility                                      | D224                      | Manufacturing Require-<br>ments Analysis   | Е          |
| 3.4.12              | Affordability                                      |                           |                                            | Е          |
| 3.4.13              | Computer Resource<br>Requirements                  | D213-2                    |                                            | Е          |
| 3.4.14              | Design and Construction                            | D211-3                    | Configuration<br>Management                | Е          |
| 3.4.14.1            | Quality Enginering                                 |                           |                                            | Е          |
| 3.4.14.2            | Parts, Materials, and Processes                    | D216-7                    | Parts, Materials and<br>Processes Analysis | Е          |
| 3.4.14.3            | Workmanship                                        |                           | -                                          | Е          |
| 3.4.14.4            | Nameplates and Product<br>Markings                 | D211-3                    | Configuration Manage-<br>ment Techniques   | Е          |
| 3.4.14.5            | Serialization                                      |                           |                                            | Е          |
| 3.4.14.6            | Mass Properties                                    |                           |                                            | Е          |
| 3.4.14.7            | Structural Properties                              |                           |                                            | Е          |
| 3.4.14.8            | Shock and Vibration                                |                           |                                            | Е          |
| 3.4.14.9            | Earthquake Survivability                           |                           |                                            | Е          |
| 3.4.14.10           | Aerodynamics                                       |                           |                                            | E          |
| 3.4.14.11           | Thermodynamics                                     |                           |                                            | E          |
| 3.4.14.12           | Chemical, Electrical, and<br>Mechanical Properties |                           |                                            | Е          |
| 3.4.14.13           | Stability                                          |                           |                                            | Е          |
| 3.4.14.14           | Coatings                                           |                           |                                            | Е          |

 $\bigcirc$ 

| PARAGRAPH<br>NUMBER | TITLE                                         | RESPONSIBLE<br>DEPARTMENT |                                          | SAR<br>APP |
|---------------------|-----------------------------------------------|---------------------------|------------------------------------------|------------|
| 3.5                 | Environmental Requirements                    | D216-2                    | Environmental Require-<br>ments Analysis | В          |
| 3.5.1               | Natural Environmental<br>Requirements         | D216-2                    | Standards Ánalysis                       | В          |
| 3.5.2               | Hostile Environmental<br>Requirements         | D216-2                    | Threat Analysis                          | В          |
| 3.5.3               | Non-Cooperative Environmenta<br>Requirements  | alD216-2                  |                                          | В          |
| 3.5.4               | Self-Induced Environmental<br>Requirements    | D216-2                    |                                          | В          |
| 3.5.5               | Environmental Impact<br>Limitations           | D216-2                    |                                          | В          |
| 3.6                 | Precedence and Criticality of<br>Requirements | D216-2                    |                                          | Е          |
| 4                   | VERIFICATION                                  |                           |                                          |            |
| 5                   | PACKAGING                                     |                           |                                          |            |
| 6                   | NOTES                                         |                           |                                          |            |



#### Lateral Traceability Models as Characteristic List Builders



ര

#### Building Universal Specifications With Perfect Modeling Alignment

| CUSTON<br>NEED<br>STATEME |     | REQ | USER<br>JIREMEN<br>IMENTAT |            |                               |                           |                | VIRON<br>STAND           | MENTA<br>ARDS |                                         |                                 |                                        |               |                        |      |        |      |       |  |
|---------------------------|-----|-----|----------------------------|------------|-------------------------------|---------------------------|----------------|--------------------------|---------------|-----------------------------------------|---------------------------------|----------------------------------------|---------------|------------------------|------|--------|------|-------|--|
|                           |     |     |                            |            | b Re                          |                           |                |                          |               | RR                                      |                                 | SPECIFICAT                             |               | STRU                   | CTUR |        |      |       |  |
| 1 2                       | 3.1 |     | 3.1.2                      | 3<br>3.1.3 | 3.1.4                         | OBLEM<br>ELING I<br>3.1.5 | SPACE<br>RESUL | .fs                      | 3.1.7         | 3.2                                     | 3.3                             | 3.4                                    | 3             | .5                     |      | 4      | 5    | 6     |  |
|                           |     |     |                            |            | INTE                          | RFACE                     |                | DEFI                     | ONMEN         | T                                       |                                 |                                        |               |                        | PROC | GRAM I | MODE | AND   |  |
|                           |     |     |                            | SF<br>MOD  | DBLEM<br>PACE<br>ELING<br>ORK |                           |                | U<br>DOE<br>MSA/H<br>TSA |               | PERFORMANCE<br>REQUIREMENTS<br>ANALYSIS | INTERFACE REQUIREMENTS ANALYSIS | SPECIAL TY<br>REQUIREMENTS<br>ANALYSIS | ENVIRONMENTAL | REQUIREMENTS ANAL YSIS |      |        |      |       |  |
| Ľ                         |     |     |                            |            |                               |                           | SY             | SML                      | Γ             |                                         |                                 |                                        | Ļ             |                        |      | B      |      |       |  |
|                           |     |     |                            |            | _                             |                           |                |                          |               |                                         |                                 |                                        |               |                        |      |        | -    | <br>- |  |

 $\bigcirc$ 

## **Three Ways to Capture the Modeling**

- Within specification paragraph 3.1.3 on a program with few specifications
- In a system architecture report (SAR) referenced in paragraph 3.1.3
- Within the computer tool used to accomplish the modeling work with a reference in paragraph 3.1.3 to the tool content

#### **Overview of Available Comprehensive Models**

- Traditional Structured Analysis UADF
  - Functional modeling
  - Product entity and interface modeling
  - Specialty engineering modeling
  - Environmental modeling
- MSA/PSARE UADF
- UML/SysML UADF



### **TSA Function Allocation**



#### **TSA Interface Definition Models**

#### SCHEMATIC BLOCK DIAGRAMMING



- Lines define interfaces
- Blocks are objects only from the product entity structure diagram

#### **N-SQUARE DIAGRAMMING**

| A ( |   |   |   | Χ       |     |  |
|-----|---|---|---|---------|-----|--|
| Χ   |   | Χ |   | Χ       |     |  |
|     | Χ |   | Χ | Χ       | Χ   |  |
|     |   | Χ |   |         |     |  |
| Χ   |   | Χ |   | А.<br>С |     |  |
|     |   |   | Χ |         | 4.5 |  |

- Marked intersections define interfaces
- Diagonal blocks are objects only from product entity block diagram
- Apparent ambiguity reflects directionality

### **TSA Specialty Engineering Identification of Requirements**



#### PRODUCT ENTITY-SPECIALTY ENGINEERING MATRIX (DESIGN CONSTRAINTS SCOPING MATRIX)

#### SPECIALTY ENGINEERING REQUIREMENTS FLOW INTO THE INDICATED SPECIFICATIONS THROUGH THE RAS

## **TSA Environment Subsets**



#### Some would add a software subset

#### **Environmental Requirements Model**

#### • System

- Identify spaces within which the system will have to function
- Select standards covering those spaces
- For each standard, select parameters that apply
- Tailor the range of selected parameters
- End item
  - Build three dimensional model of end items, physical processes, and process environments
  - Extract item environments

#### • Component

- Zone end item into spaces of common environmental characteristics
- Map components to zones
- Components inherit zone environmental requirements

#### RAS – Complete Using TSA UADF

| MODEL<br>MID         | ENTITY<br>MODEL ENTITY NAME                                           | requi<br>Rid | REMENT ENTITY<br>REQUIREMENT                                | PRODI<br>PID | UCT ENTITY<br>ITEM NAME                              | DOCUM<br>PARA | IENT ENTITY<br>TITLE |
|----------------------|-----------------------------------------------------------------------|--------------|-------------------------------------------------------------|--------------|------------------------------------------------------|---------------|----------------------|
| F47<br>F471<br>F4711 | Use System<br>Deployment Ship Operations<br>Store Array Operationally | XR67         | Storage Volume < 10 ISO Vans                                | A<br>A<br>A1 | Product System<br>Product System<br>Sensor Subsystem |               |                      |
| H                    | Specialty Engineering Disciplines                                     |              |                                                             | А            | Product System                                       |               |                      |
| H11                  | Reliability                                                           | EW34         | Failure Rate < 10 x 10-6                                    | A1           | Sensor Subsystem                                     | 3.1.5         | Reliability          |
| H11                  | Reliability                                                           | RG31         | Failure Rate < 3 x 10-6                                     | A11          | Cable                                                | 3.1.5         | Reliability          |
| H11                  | Reliability                                                           | FYH4         | Failure Rate < 5 x 10-6                                     | A12          | Sensor Element                                       | 3.1.5         | Reliability          |
| H11                  | Reliability                                                           | G8R4         | Failure Rate < 2 x 10-6                                     | A13          | Pressure Vessel                                      | 3.1.5         | Reliability          |
| H12                  | Maintainability                                                       | 6GHU         | Mean Time to Repair < 0.2 Hours                             | A1           | Sensor Subsystem                                     | 3.1.6         | Maintainability      |
| H12                  | Maintainability                                                       | U9R4         | Mean Time to Repair < 0.4 Hours                             | A11          | Cable                                                | 3.1.6         | Maintainability      |
| H12                  | Maintainability                                                       | J897         | Mean Time to Repair < 0.2 Hours                             | A12          | Sensor Element                                       | 3.1.6         | Maintainability      |
| H12                  | Maintainability                                                       | 9D7H         | Mean Time to Repair < 0.1 Hours                             | A13          | Pressure Vessel                                      | 3.1.6         | Maintainability      |
|                      |                                                                       |              |                                                             |              |                                                      |               |                      |
| 1                    | System Interface                                                      |              |                                                             | A            | Product System                                       |               |                      |
| 11                   | Internal Interface                                                    |              |                                                             | A            | Product System                                       |               |                      |
| .111                 | Sensor Subsystem Innerface                                            |              |                                                             | A1           |                                                      |               |                      |
| 1181                 | Aggregate Signal Feed Source<br>Impedance                             | E37H         | Aggregate Signal Feed Source<br>Impedance= 52 ohms ± 2 ohms | A1           | Sensor Subsystem                                     |               |                      |
| 1181                 | Aggregate Signal Feed Load                                            | E371         | Aggregate Signal Feed Load                                  | A4           | Analysis and Reporting                               |               |                      |
|                      | Impedance                                                             |              | Impedance= 52 ohms ± 2 ohms                                 |              | Subsystem                                            |               |                      |
| 12                   | System External Interface                                             |              |                                                             | А            | Product System                                       |               |                      |
| Q                    | System Environment                                                    |              |                                                             | А            | Product System                                       |               |                      |
| QH                   | Hostile Environment                                                   |              |                                                             | A            | Product System                                       |               |                      |
| QI                   | Self-Induced Environmental<br>Stresses                                |              |                                                             | А            | Product System                                       |               |                      |
| QN                   | Natural Environment                                                   |              |                                                             | А            | Product System                                       |               |                      |
| QN1                  | Temperature                                                           | 6D74         | -40 degrees F< Temperature<br>< +140 degrees F              | A            | Product System                                       |               |                      |
| QX                   | Non-Cooperative Environmental<br>Stresses                             |              |                                                             | A            | Product System                                       |               |                      |

 $\bigcirc$ 

#### Lateral Traceability Through the RAS and SAR



# **MSA/PSARE** as a UADF

- PSARE provides a complete UDAF problem space model
- Alternatives for the solution space model
  - Simply use the PSARE architecture model but some parts still not covered so augment with environmental modeling and specialty engineering modeling
  - Replace the PSARE architecture model with the common solution space model set
    - » Product entity structure identified by super bubbles
    - » Specialty engineering scoping matrix and specialty models
    - » Three-layered environmental model
    - » Interfaces handled by "data flow"
    - » RAS

#### **MSA/PSARE** Sample System Analysis – Context Diagram Expansion



#### **MSA/PSARE** Sample System Analysis - Super Bubbles



#### **PSARE** Sample System Analysis - DFD



# **P-Spec Sample**

| MID<br>TITLE<br>PERSECTIVE<br>FIGURE | FC1<br>STORE WA<br>MATERIAL<br>C-1 SHEET | STORAGE                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INFLOWS                              | R18 loca<br>at location                  | al rainwater collected. This water should be filtered in some fashion<br>east to the extent that silt does not accumulate in the storage<br>sel.                                                                                                                                                                            |
|                                      | R1Z Wat                                  | er District water made available to increase stored water.                                                                                                                                                                                                                                                                  |
| OUTFLOWS                             | filte<br>Rel                             | ter from storage for use in the facility water deluge. Some form of<br>pring is necessary to prelude debris jamming of the pump being fed.<br>ated plumbing must be able to handle a100 gallons per minute<br>np rate.                                                                                                      |
| TRANSFORMATION                       |                                          | put equals input except that if the vessel is open to the ironment some stored water will be lost due to evaporation.                                                                                                                                                                                                       |
|                                      |                                          | necessary for the storage vessel to have a capacity of TBD-1 ons.                                                                                                                                                                                                                                                           |
|                                      | abo<br>por<br>ope                        | e storage vessel may be a tank of metal or fiberglass construction<br>ove ground or buried, a swimming pool, or a naturally appearing<br>od or one fashioned in the ground through an earth moving<br>pration. A tower tank is not encouraged because of the owner<br>uirement in paragraph 3.1.2.1.2 regarding appearance. |

## **A Data Dictionary Fragment**

Table C-1 Data Dictionary (Continued)

| SYMBOL | NAME                        | SOURCE     | DESTINATION | DESCRIPTION                                                                                                                                                           |
|--------|-----------------------------|------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R1L    | F7-F5 Relationship          | F7         | F5          | Command entry into Standby Mode.                                                                                                                                      |
| R1M    | F7-FD Relationship          | F7         | FD          | Command Water Deluge Mode.                                                                                                                                            |
| R1N    | F7-F9 Relationship          | F7         | F9          | Command Retardant Deluge Mode.                                                                                                                                        |
| R1P    | F5-F8 Relationship          | F5         | F8          | Command Water Deluge Mode.                                                                                                                                            |
| R1Q    | F8-F9 Relationship          | F8         | F9          | Command Retardant Deluge Mode.                                                                                                                                        |
| R1R    | F9-FA Relationship          | F9         | FA          |                                                                                                                                                                       |
| R1S    | FB-FC Relationship          | FB         | FC          | Rain water flows from the collection network to the storage medium,                                                                                                   |
| R1T    | FC-FD Relationship          | FC         | FD          |                                                                                                                                                                       |
| R1T1   | Stored Water to Pump        | FC1        | FD7         | Stored water flows to the pump intake.                                                                                                                                |
| R1T2   | Stored Water Level Low      | FC3        | FD4         | Stored water sufficiently low to demand replenishment from water district source.                                                                                     |
| R1T3   | Stored Water Level Adequate | FC3        | FD3         | Stored adequate to support water deluge.                                                                                                                              |
| R1U    | FD-F8 Relationship          | FD         | F8          |                                                                                                                                                                       |
| R1V    | FD-FA Relationship          | FD         | FA          |                                                                                                                                                                       |
| R1W    | FA-F1 Relationship          | FA         | F1          |                                                                                                                                                                       |
| R1X    | F1-FE Relationship          | F1         | FE          | The system is removed from operation for maintenance and/or servicing                                                                                                 |
| R1Y    | FE-F1 Relationship          | FE         | F1          | The system is restored to full operation following maintenance or servicing.                                                                                          |
| R1Z    | FC-FD Relationship          | FD5        | FC1         | Water flows from water district source to storage.                                                                                                                    |
| R1a    | C2-F4 Relationship          | F2         | F4          | A sufficiently high hazard index must<br>trigger a fire fighting service request and<br>start a clock measuring response time. This<br>relationship starts the clock. |
| R1b    | F1-F8 Relationship          | <b>F</b> 1 | F8          | Command to enable execution of the water deluge when commanded from F5.                                                                                               |

MID

#### UML/SysML Entry The Context Diagram Crutch



#### UML/SysML Dynamic Modeling Overview



#### UML/SysML Modeling Use Case Analysis Example



JOG System Engineering

## Hierarchical Structure for UML/SysML Analysis



**VERSION 12.0** 

12E2A-50

**JOG System Engineering** 

#### UML/SysML Modeling Dynamic Modeling Artifacts Example



VERSION 12.0

12E2A-51

JOG System Engineering

C

# **All Possible Inter-Model Transfers**



## Inter-Model Transfers With a UML/SysML UADF



# **UML/SysML Cyclical Analysis**



VERSION 12.0

12E2A-54

JOG System Engineering

# **Entity Identification Using UML/SysML**



## **SAR Organization For UML-SysML**



രി

# **A Universal Model for the Future?**



 $\bigcirc$ 

## What Will the Future Look Like?

- A single model for the problem space no matter how the specific product will be developed in hardware or software
- Requirements embedded in problem space models encouraging requirements compliance in design models with the specifications appearing in the form of models
- A connected series of models for design
- Inter-model effects observable directly rather than individual human interpretation of effects followed by conversation and action - can we do this?
- Verification linkage through models
- Eventual connection between the problem space modeling and CAD-CAM models.
- A business process model coordinated with engineering modeling

## **Model-Driven Challenges**

- Will it be possible for managers to avoid whiplash due to the speed of the analytical process?
- Can we provide adequate exposure of the ongoing and dynamic modeling work to encourage sound management of the development process?
- Will it really be possible to build models that fully express the problem space essential characteristics (requirements) while permitting a solution space larger than a single solution?

## The Computer Network Becomes a Team Member in Good Standing



## Development Evolution Timeline, Driving Methods Staging



## Model Convergence On the Road to Enterprise Architecting



(C)

## Action Items For You as a System Engineer

- Continue your studies of requirements work
- Come to an understanding about UML and SysML
- Within your company and programs develop modeling skills and work toward simplifying your combined set of models into a universal framework
- Work toward correlating the SW and HW development work patterns so as to encourage more effective integration
- Join INCOSE/NDIA working groups that deal with the issues covered in this paper and offer your ideas.