

Affordable Readiness Model

(formerly Lifecycle Management Cost Optimizer)

National Defense Industrial Association 13th Annual Systems Engineering Conference October 25-28, 2010

Jerry Cothran Senior Manager, Logistics Engineering Lockheed Martin Corporation

Agenda

- The Cost Modeling Challenge
- ARM model Methodology
- F-22 Supply Chain Comparative Analysis Example
- Summary

The Challenge

- DoD's increasing emphasis on sustainment costs
- DoD lacks key information and cost visibility necessary to produce life-cycle O&S cost estimates and baselines
 - GAO-10-717: O&S Cost Analysis Inadequate
 - CAPE Report to Congress August 2010 re O&S baselines
- Weakness of the static point estimate approach
 - Reliant on bounded ground rules and assumptions; easily biased
 - Generates unrealistic expectations
- Need for dynamic capability reflecting range estimates and impact on operational performance

What will be the Life Cycle Cost of the X-45B Tactical Fighter Aircraft?

Or This?

Which estimate would be a more accurate early planning and decision support foundation?

This?

EXACTLY \$15.875B

Sensitivity Factors

- Life span
- Peacetime vs. Contingency use
- Mission profile
- OPTEMPO
- Technology change
- Funding availability

ARM Example Application F-22 Supply Chain Comparative Assessment

1. FASTeR Partnership (Follow-on Agile Sustainment for the Raptor)

- Lockheed Martin managed supply chain
- Government hands-on depot MRO
- 2. Government managed Supply Chain
 - Government-managed supply chain
 - Government hands-on depot MRO

The Analytic Methodology

- 1. Identify & Define the Relevant Operational Outcomes
- 2. Identify & Define the Factors that Influence the Outcomes
- 3. Develop Representative Decision Support Interface
- 4. Create a Map of Processes That Impact Outcomes
- 5. Develop Discrete Event Simulation Populated With Distributions
- 6. Run the Simulation Multiple Times Across the Range of Input Factors to Capture Uncertainty Ranges
- 7. Validate the Simulation Outputs
- 8. Populate Decision Support Interface enabling comparison of alternatives against operational outcomes under various user defined ranges of input factors.

Input Factors

📓 F-22 Supply Chain Management Comparative Analysis Model	
ControlBox	
F-22 Supply Chain Management Comparative	
Analysis Model	
▼ Operational Factors	
FactorValue:Mean Flight Time Between Critical Failure (hours): 4Sortie Time (minutes):90Ground Turn Around Time (hours):3Steady State Monthly Flight Hours:3500Years of Program:25FASTeR Reliability Improvement Toggle	
Supply Chain Factors	
FactorFASTeR PartnershipGovernmentDLR Repair Total Cycle Time (days):55120120Initial Inventory Investment (Billions \$):1.41.41.4	Critical Driving Factors
Supply Chain Factors (Other)	
Factor Value: NMCS Engine Parts (%): 1 NMCS DLA Parts (%): 1	
▼ Maintenance Factors	
FactorValue:Depot Status (%)8Unit Possessed/Not Reported Status (%):6Maintenance Duration (days):2	
	AFET INSO PS

Outcomes

Critical Outcomes

NOTE: Outcomes are portrayed as range vice point values; the tighter the range, the higher the confidence level around the values

Scenario 1: Equal Inventory Investment

Scenario 2: Add'l Inventory Investment

Scenario 3: Reliability Growth

anagement Comparative Analysis Model 2 in Management Comparative

Analysis Model

÷	Operational Factors					
	actor	Value:		0		
	Mean Flight Time Between Critical Failure (hours):	4		0		
	Sortie Time (minutes):	90 2		U		
	Steady State Monthly Flight Hours:	3 3500				
,	Years of Program:	25				
ſ	FASTeR Reliability Improvement Toggle 📝 🗲 🗕			0	_	Reliability Improvement loggle
÷	Supply Chain Factors					
!	Factor FASTeR F	artnersh	nip	Governm	nent	
	DLR Repair Total Cycle Time (days): 55		-	120 🗆		
	nitial Inventory Investment (Billions \$): 1.4			2.9		U
Þ	Supply Chain Factors (Other)					
!	Factor Value:					The F-22 "Program of
1	NMCS Engine Parts (%): 0.5					
Ľ	MCS DLA Parts (%): 0.5					Record includes a
•	Maintenance Factors					aliability growth program
!	Factor Value:					enabling growin program
	Depot Status (%) 6)			t	o reduce MEHRME from
	Unit Possessed/Not Reported Status (%): 4	0			Ľ	
	Maintenance Duration (days): 1.5	U				~ 7 hours to ~ 4 hours

Scenario 2: Reliability Improvement Toggle

Summary

- Dynamic decision support capability
- Shows impact on operational and cost outcomes
- Enables interactive sensitivity analysis for "what if" scenarios
- Accommodates "real world" potential scenarios
- A critical tool in the analysis toolbox

Contact Information

nsa

- Jerry Cothran
- Lockheed Martin Corporation 10530 Rosehaven Street Fairfax, VA 22030
- Email: jerry.d.cothran@ARM.com
- Phone
 - Work: 703-251-7273
 - Mobile: 703-789-7293