Using RACE for Affordability

Jamie Fieber
Lockheed Martin Space Systems Co.
October 2010
Affordable Innovation

In order to figure out the sweet spot, we must be able to determine the cost and performance of the exquisite solution ~ then back down with alternative solutions.
Why is Systems Engineering Responsible for Evaluating Affordability?

• It requires that system level trades (AoA, CAIV, etc.) be conducted
• It requires the identification of baseline and alternative architectures
• Optimization should be done at the system level
• It requires evaluations of system cost and system performance
• It may result in ‘push back’ on requirements
Rapid Affordability and CAIV Exploration (RACE)

- An Excel COM addin that was developed in Visual Studio™ using Visual Basic .NET (VB.NET)

- Suite of Decision Analysis Capabilities
 - Analysis of Alternatives
 - Optimization
 - Pair wise Comparison
 - Tornado / Spider Plot
 - Design Space
 - Carpet Plot
 - Model Sleuth
 - Surface Plot
RACE Inputs

- Design alternatives
- Bins and metrics
- Threshold and objective requirements values
- Weightings
- Utility curves
- Performance of each alternative
Setting Up Analysis of Alternatives

Bins help organize metrics

Value Function

Relative weightings of each metric

Determine value & optimization constraints
Value Functions

Value Function
- Metric: LaunchCost
- Units: lower limit
- Weight: 1
- Value Function: convex
- Threshold: 450
- Objective: 300
- Goal: Best
- Val at Threshold: 0.2

Value Function
- Metric: AUC
- Units: lower limit
- Weight: 3
- Value Function: linear
- Threshold: 70
- Objective: 12
- Goal: Best
- Val at Threshold: 0.1

Value Function
- Metric: TotalCost
- Units: lower limit
- Weight: 8
- Value Function: step
- Threshold: 6000
- Objective: 2000
- Goal: Best
- Val at Threshold: 0.2

Value Function
- Metric: Service Load
- Units: lower limit
- Weight: 5
- Value Function: step
- Threshold: 1500000
- Objective: 7000000
- Goal: Wow
- Val at Threshold: 0
Weighting Sensitivities

WAM Score vs Performance Wtg

WAM Score vs Schedule Wtg

WAM Score vs Risk Wtg

WGM Score vs Cost Wtg
Contribution to Metric Scoring

- Why did an alternative score well?
- Quickly determine where strengths and weaknesses exist
- Preview to weighting sensitivity
- Promotes objectivity
- Look for the ‘balanced’ solution

Bin Contribution to Score (WAM)

<table>
<thead>
<tr>
<th>Product</th>
<th>Cost</th>
<th>Performance</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veristron M7273S</td>
<td>6.06%</td>
<td>9.78%</td>
<td>6.74%</td>
</tr>
<tr>
<td>TRENDnet TFC-210MST</td>
<td>7.34%</td>
<td>9.46%</td>
<td>9.93%</td>
</tr>
<tr>
<td>Transition M/E-PSW-FX-01</td>
<td>6.57%</td>
<td>59.40%</td>
<td>13.13%</td>
</tr>
<tr>
<td>Omnitron 1100-0-1</td>
<td>6.88%</td>
<td>54.76%</td>
<td>12.22%</td>
</tr>
<tr>
<td>MPL TX2FX</td>
<td>12%</td>
<td>66.37%</td>
<td>12.54%</td>
</tr>
<tr>
<td>LevelOne FVT-4002</td>
<td>7.08%</td>
<td>18.89%</td>
<td>2.93%</td>
</tr>
<tr>
<td>IMC MiniMC</td>
<td>6.99%</td>
<td>9.73%</td>
<td>13.13%</td>
</tr>
</tbody>
</table>

- Lowest Cost
- Smallest Size
- Highest Performance
Surface Plots

- 3 dimensional surface plots allow us to evaluate the robustness of the optimal solution
This is Harder Than it Looks

• System designers sometimes have trouble even establishing a baseline

• Limited resources

• Weightings and utility curves can be subjective

• The utility of any application is highly dependent on the validity of its input
What Systems Engineering Can Do to Promote Affordability Studies

• Solicit customer input on weightings and utility curves

• Get a feel for customer willingness to accept ‘push back’ on requirements
 – Focus on those that may be flexible

• Lock down the system baseline
Conclusions

• The trade study *process* is the important element here
 – RACE is simply one of many applications that can be used

• Trade study results are more credible when using a tool like RACE because they produce a *more objective* evaluation of the design alternatives