Panel on SE Standards

Garry Roedler

Lockheed Martin Corporation, Engineering Outreach Program Mgr ISO/IEC JTC1/SC7 WG7 US Head of Delegation INCOSE Corporate Advisory Group Co-chair

28 October 2010

Discussion presented here is a general industry perspective from involvement in various efforts to develop SE standards and guides.

Role, Need, or Value of Standards

Role, Need, or Value of Standards

Common technical reference model/framework

- Common terminology, concepts, and processes
- Built on proven experience and lessons learned
- Easy to tailor to meet project/organization needs
- Full life cycle approach
 - Reduces risk across the life cycle
- Basis for improving:
 - Communication and integration
 - Quality of the product
 - Productivity
 - Customer satisfaction
- SC7 standards are part of an aligned set of standards

Work to a common vision, agreements, and general process concepts

State of Standards

State of standards, guides, etc.

- Corporate adoption general observations
 - Many corporations have adopted a few key standards, models, and frameworks for top-level process
 - Process requirements/guidance; not the process itself
 - Influence development of organizational standard processes
 - Potential for reasonable commonality, even after tailoring
 - Provides leverage of industry consensus and good practices
 - Common vocabulary, if adopted
 - Basis for desired certifications
 - Domain specific / product specific standards and specs adopted when standardization needed in supply chain
 - Lower-level documents adopted as they address needs

Typical SE related standards & guides

Document ID	Document Title	Comment	
ISO/IEC/IEEE 15288	System Life Cycle Processes	Wide adoption including NATO, DoD, INCOSE,	
ISO/IEC/IEEE 12207	Software Life Cycle Processes		
ISO/IEC/IEEE 42010	Architecture Description		
ISO/IEC/IEEE 24765	Systems and Software Engineering Vocabulary	Includes terms and definitions from ISO/IEC, IEEE, PMI	
ISO 9001	Quality Management System	Including AS9100 and other domain variants	
CMMI	Capability Maturity Model – Integ.		
SEH	INCOSE SE Handbook	Basis for SE Cert.	
DAG	Defense Acquisition Guidebook		
ISO/IEC/IEEE 26702	Management of the Systems Engineering Process	Aka IEEE Std 1220 – under revision – SEMP	
EIA 632	Engineering of a System	Under revision	
Various others	Subset of lower level process stds, document descriptions and guides	E.g., 15939, 29148, 24748,	

Top needs/gaps

- Focus areas for standards
 - Architecture process and guidance
 - Enterprise
 - System
 - Requirements engineering
 - System Integration
 - Verification and validation
 - Assurance and security
 - Life cycle support
 - Service life cycle
- And most of all ...
 - A set of integrated standards
 - Common vocabulary
 - Single, integrated process set
 - Single process structure
 - Jointly planned level of prescription
 - Suitable across the audiences
 - Accounts for considerations in wide range of domains and applications

Intended Relationships of Key System & Software Engineering Process Standards After Alignment in SC7

Common vocabulary, process architecture, and process description conventions

Process Assessment (ISO/IEC 15504) and Quality Mgmt (ISO 9001, ISO/IEC 90003/24783)

Source: Adapted from chart of James Moore, MITRE Corp. by Garry Roedler, Lockheed Martin. .

© 2007 The MITRE Corporation.

Current Alignment/Integration Status for SC7

Towards Full Integration in SC7

Study Group established

- Investigate scope and content of Integration Phase
- Objective to achieve a fully harmonized view of the system and software life cycle processes

Integration to consider:

- Common purpose and outcomes
- Architecture of the standards
- Level of prescription of activities and tasks
- Life cycle treatments
- Application to services and operations
- Common verification and validation concepts
- Common configuration management concepts
- Alignment with other applicable standards
- Rationalization of application guides

DoD/MIL Standards versus Industry Standards

Pros and Cons of DoD/MIL Standards versus Industry Standards

	Consensus Standards	DoD/MIL Standards
Built on industry experience and consensus		
Widespread use, including internationally		
Cost to develop & maintain		
Availability or cost to access		
Time to develop/revise		
Focus on specific sector		
Validation within the sector		
Likelihood to drive cost-effective practices		
Likelihood to spur competition and affordability		j /
Drives certification, licensing, laws, or policy		
Integration with other related standards		

Decision Criteria

Existence of relevant standard Adequacy for application Ability to meet DoD needs for intended usage Acceptance within industry Level of usage, validation, and incorporation into other guidance Consistency with other standards or body of knowledge Opportunities to influence direction Both new documents and revisions Feedback loop/mechanisms and schedule for maintenance

With respect to current policy

- Policy: "... wherever practical, and to make maximum use of non-Government standards and commercial technologies, products, and practices."
- Public law: "... use non-government standards in lieu of developing or maintaining government standards, IF the non-government standard satisfies the government's requirements ..."
- The existing policy and law (if adhered to) drives a useful and balanced approach
 - Requires evaluation/decision criteria for satisfaction of government needs to ensure consistency
 - Need to avoid "not invented here", personal preferences, and desire for perfection

Back-up Charts

Original Approach for Harmonization

ISO/IEC 12207:2008

aligned and using a

nomenclature and

structure with

ISO/IEC 15288

common

Agreed and technically correct ISO/IEC 12207 and guide - can be used with confidence

Small change

Agreed and technically correct ISO/IEC 15288 and guide - can be used with confidence ISO/IEC 15288:2008 using a common nomenclature and structure with ISO/IEC 12207 ISO/IEC XYZ General life cycle process set for systems and software

Larger change

Guides and specific life cycle management process standards

2004

18-36 months

Future

Source: ISO/IEC JTC1/SC7 WG7

Aligned Process Models for ISO/IEC 15288 & 12207

15288 2207 Processes 12207 Processes gineering

ISO/IEC/IEEE 15288 Processes and Relationship to ISO/IEC/IEEE 12207

Source: Adapted from ISO/IEC JTCI/SC7/WG7 presentation on ISO/IEC 15288.

ISO/IEC/IEEE 15288 Process Structure

