

Proposed Functional Architecture and Associated Benefits Analysis of a Common Ground Control Station for Unmanned Aircraft Systems

1

Douglas Mousseau CDR Michael Supko

NAVAIR NPS Cohort #1 October 2010

Capstone Team

Student Team Members							
Michael Chanda	Dan Liston						
Julee DiPlacido	Doug Mousseau						
John Dougherty	Jim Nadeau						
Rich Egan	Ted Rothman						
John Kelly	Lisa Smith						
Trent Kingery	Michael Supko						

Advisors
Dr. Richard Millar
Mr. Gregory Miller
CAPT John Schmidt

Full report available at www.dtic.mil Report # NPS-SE-10-002

The rapid growth in UASs has resulted in a lack of commonality across the DoD which has contributed to:

- Unique training for all systems
- Large manpower requirements for projected systems
- Unique hardware, software, and logistics support

USD AT&L ADM 2009

- ADM dated 11 February 2009
- Result of GCS Review of Predator, Reaper and Sky Warrior UAS
- Addressed to Secretary of the Army, Navy, & Air Force
- Goal: Reduce life cycle cost in the development, operation, and sustainment of UASs

Hon John Young Former USD (AT&L)

"The acquisition team has the opportunity to do something truly joint and powerful by adopting a common GCS architecture that is open and thus will allow for rapid addition of modular functionality" Hon John Young

Elements *Influencing* Commonality and Project Scope

Architecture Focus Areas

- Commonality vs. Interoperability
- Airframe Size and Groupings
 - Limit scope to Groups 3 and above.
- Air Vehicle Control versus Mission Specific Payload
 - Explore commonality and interoperability for air vehicle control functions only.
- Human-Machine Interface
 - Examine common HMI for air vehicle control functions only.
- Hardware and Software
 - Limit to a functional level, therefore hardware and software allocation is not required.
- Implementation through Retrofit or New Production
 - Consider implementing the proposed functional architecture on new production assets only, retrofit will not be explored.
- Department of Defense Multiservice Cooperation
 - Concentrate on Department of Navy systems and requirements.
- United States and Allied Cooperation
 - Limit scope to U.S. only.

Areas *Impacted* by Commonality and Project Scope

Training

- Training is the primary focus for the benefits of the proposed common architecture.
- Basing
 - Potential benefits examined only when related to training as described in above section.

Manpower Requirements

- Potential benefits examined only when related to training as described in above section.

Personnel Assignments

- Potential benefits examined only when related to training as described in above section.

Reliability and Maintainability (R&M)

- Not examined further as part of this effort.
- Other Logistical Areas
 - Not examined further as part of this effort.

O&S and Development Cost

Potential benefits examined only when related to training as described in above section.

Mission Capability

- Not examined further as part of this effort.

Benefits Analysis Focus Areas

Navy Program of Record Comparisons

- Researched requirements documents for the following programs of record in DON:
 - BAMS, Fire Scout, STUAS
- Review of KPPs & lower-level req'ts:
 - Net Ready is only common KPP between these programs
 - Few KPPs related to GCS, majority are for air vehicle
 - No requirements for:
 - » Interoperability with heterogeneous UASs
 - » GCS commonality with heterogeneous UASs
 - » Training commonality with other UASs

Timeline of Requirements Development for DoN UASs

Any commonality being sought is between manned and unmanned system counterparts: • BAMS & P-8A • Fire Scout & MH-60R/S

Chairman JCS UAS Training Standards

CJCSI 3255.01 Joint Unmanned Aircraft Systems Training Standards								
UAS Group	BUQ I	BUQ II	BUQ III	BUQ IV				
1	x							
2	x	x						
3	x	x						
4	x	x	x					
5	x	x	x	x				

Focus Area: Group 3 and above (BAMS, Fire Scout, STUAS)

- Mandated Minimum BUQ levels and JMQs required for each UAS Group
- Dated September 2009

BUQ = Basic UAS Qualification KSA = Knowledge, Skills and Abilities

Proposed Requirements for a Common GCS

The Ground Control Station shall:

- 1. Enable Air Vehicle Operator (AVO) training commonality across multiple UAS platforms.
- 2. Utilize a common HMI for AVO functions.
- 3. Utilize directed vice controlled air vehicle operation.
- 4. Utilize separate HMI for payload and air vehicle control.
- 5. Utilize a common mission planning system.
- 6. Enable interoperability between multiple UASs.
- 7. Enable common communications and data link management between multiple UASs.
- 8. Utilize a common data format to enable communication between multiple manned and unmanned systems.
- 9. Utilize modular and scalable systems software and architecture.
- 10. Enable a common approach to simplify support and maintenance across multiple UAS platforms.
- 11. Enable a common approach to reduce the manpower requirements across multiple UAS platforms.
- 12. Enable a common approach to minimize UAS basing.

Design of the Proposed Common GCS Architecture

- Focused on a common HMI for the air vehicle control functions of Groups 3-5 UASs
- Based on:
 - The preceding 12 requirements
 - Documents from BAMS, Fire Scout and STUAS
 - NATO and US standards
 - Unmanned Systems Integrated Roadmap
- Functional architecture created with CORE (commercial model-based systems engineering tool) and communicated via hierarchical charts, flow diagrams and IDEFO language

A-1: External Systems Diagram

A0: UAS Functions Diagram

A1: Perform GCS Functions

Complete IDEF0 Diagrams

16

Architecture Traceability back to the Requirements

Requirement 2: Common GCS HMI for AVO Functions

Requirement 3: Directed vice controlled air vehicle operations

Requirement 4: The AVO and payload operators shall have separate controls

(The common HMI and directed vice controlled operations are enabled by breaking out the interface function separately)

Requirement 7: Common communications and data links Requirement 8: Common data format

Basic UAS Qualification (BUQ) Analysis Results

	<i>As-Is</i> GCS Architecture		JUCCS Proposed Common GCS Architecture		Total KSAs per	
	Common KSAs	Unique KSAs	Common KSAs	Unique KSAs	Architecture	
BUQ I	36	68	97	7	104	
BUQ II	13	18	31	0	31	
BUQ III	5	14	19	0	19	
BUQ IV	5	54	59	0	59	
TOTAL	59	154	206	7	213	

A Common GCS Architecture reduces the number of platform-unique KSAs to only seven. These seven KSAs all deal with functions that are unique to the specific UAS (pre-flight, post-flight, emergencies).

Current Training Concepts Utilize Multiple Locations

Possible AVO Training Flow for the Proposed Common Architecture with a Common Schoolhouse

<u>Highlights</u>

•206/213 KSAs taught across all Group 3-5 UASs

- •7 KSAs pushed to operational units for instruction
- •Two Courses of Instruction
 - •New Accessions
 - •Previous Operators (Refresher Training)
- •Common location proposed for Core Training

Recommendations

- Modify NAVAIR acquisition process for UAS programs
 - Create common GCS program office that is separate from UAV program offices
 - Common GCS program office would:
 - » Coordinate with all UAS program offices
 - » Maintain and update the architecture and software
 - » Utilize a common HMI module
 - » Hardware agnostic (minimum req'ts and ICDs)
 - » Maintain single command set for interoperability between heterogeneous UAVs
- Mandate the requirement for a common GCS

Full report available at www.dtic.mil Report # NPS-SE-10-002