Joint Fuze Technology Program

MEMS Retard & Impact Sensors

Principal: Walter Maurer, NAWCWD China Lake

Contributors:

Dr. Daniel Jean, NSWC Indian Head Ryan Knight, ARDEC

13 May 2010 DISTRIBUTION STATEMENT A - APPROVED FOR PUBLIC RELEASE. DISTRIBUTION IS UNLIMITED.

Objective

- Exploit existing MEMS microfabrication and packaging technologies to realize DoD retard and impact sensors with <u>improved performance</u>:
 - precision
 - reliability
 - producibility
 - cost effectiveness

Potential Payoff

- Improved G-sensor performance for existing & future fuzes including:
 - FMU-139 (impact sensor; retard sensor)
 - FMU-143 (impact sensor)
 - High Reliability Fuze (impact sensor)
 - Hardened freefall weapon fuzing applications

Background

- > Traditional coilspring-mass technology:
 - Wider variability in performance than MEMS
 - wire & coil dimensional tolerances
 - coil winding stresses & annealing
 - Difficult to <u>precisely</u> sense low G's with "macro world" springs

- Newer MEMS-technology appears well-suited for making improved low-G sensors per DoD exploratory work to date:
 - ARDEC: metal G-sensors and packaging
 - NSWCIH: silicon G-sensors and packaging
 - NAWCWD: precision-electroplated G-sensors

Courtesy of ARDEC

Courtesy of NSWCIH

NAWCWD 5G Sensor (2005)

Background (cont.)

Centrifuge Test of Low-G Sensor in 1G Increments

13 May 2010

- Modify existing NSWC and ARDEC sensor designs to duplicate performance of currently-fielded non-MEMS sensors
 - Iow-G impact sensors (<100G)
 - very low-G retard sensors (<5G)
- > Fabrication
 - ARL (NSWC sensors); HT-Micro (ARDEC sensors)

> In-House Packaging & Testing

Requirements obtained for bomb fuze sensors

- Retard sensor: 1.9G no-go, 2.3 all-go
- Impact sensor: 40G no-go, 80G all-go. Velocity change of 2 fps will cause closure.

Production Drawings of Retard Sensor (left) & Impact Switch 13 May 2010

UNCLASSIFIED

1st-Year Progress (cont.)

NSWCIH Retard Sensor

- > Design layout completed
 - Deep Reactive Ion Etching (DRIE)
 - Design variations: 1.5, 2.1, 3.0, 4.0, and 5.0 G
 - Unidirectional

- In-plane contact switch
- Chip size 5 x 5 mm

Simulation completed

 Spring deflection under a 13 May 2010 static load (k = 0.139 N/m)

NSWCIH Impact Sensor

Design layout completed

- Deep Reactive Ion Etching (DRIE)
- Various closure levels to bracket target performance
- Hemispherical contacts
 - 8 in-plane, 1 out-of-plane
- Chip size 5 x 5 mm

Simulation nearly completed

MATLAB-based dynamic modeling

ARDEC Retard Sensor

> Preliminary modeling completed

- Metal MEMS design to be made by htmicro
- 2.1 G
- Size ~ 6 x 6 x 1 mm

MEAL SOUTION STR-1 ST

Preliminary FEA

Interior gold contact which only detects z-direction movements (will not detect rocking motion)

13 May 2010

ARDEC Impact Sensor

- > Preliminary modeling completed
 - Metal MEMS design to be made by htmicro
 - Size ~ 5 x 5 x 0.67 mm

- <u>Scaled version</u> of successfully demonstrated 500G Impact Sensor
 - Over 100 data points collected with Mk19 40mm MEMS Integration fuze
 - Only two known failures
 - More data points to be collected in May 2010

0.674mm

ARDEC Impact Sensor (cont.)

> Design Issues:

- Tends to make contact in a rocking/rolling mode (similar to contact that a spinning penny makes as its spinning dies down). Thus, squeeze-film air damping is not utilized very well.
- This rocking motion will make contact under considerably lower inertial forces due to the moment created, thus affecting closure threshold.

Other ARDEC Design Issues

- > Sensitivity to short duration impulses
 - increasing surface area will increase squeeze film and Couette damping, thus increasing sensor's g-seconds
 - Higher nitrogen pressure during packaging

Contact sticking

increase sputtered-gold contact's rhodium concentration

- Gap dimensions

- ensure that spring remains in linear bending regime
- must be large enough to prevent lockup

13 May 2010

- G-sensor basic requirements have been identified
- > 1st-iteration sensors have been designed & modeled
- > Layouts are nearly ready for fabrication
- > Fab contracts/delivery orders are in place
- > Additional info to be obtained for existing sensors:
 - Resonance & response to orientation
 - Production/Acceptance test requirements, methods & data