

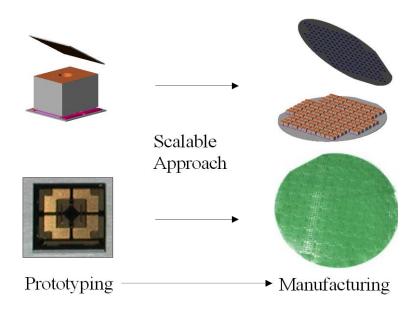
Low-Cost MEMS Initiators Chopin Hua

MicroAssembly Technologies, Inc.

Chopin Hua Dr. Michael Cohn Kevin Chang Brian Kirby Ross Millenacker



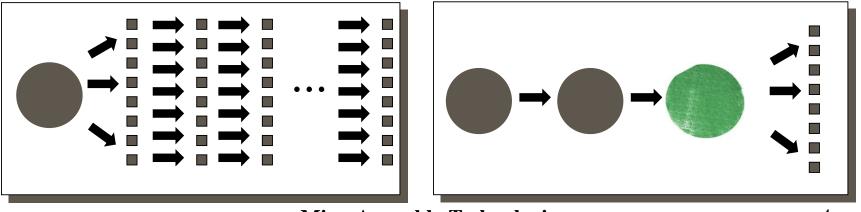
Dr. Brian Fuchs Anthony DiStasio


Becki Amendt


Wayne Hanson

MEMS Background

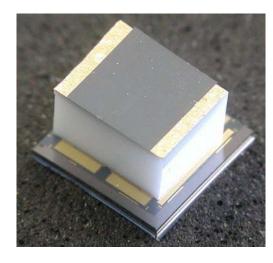
- Applications beyond Munitions
 - Airbag initiators
 - Stability Control
 - Televisions
- Benefits using MEMS
 - Low cost
 - Reliability
 - More intelligent systems
 - Scalability

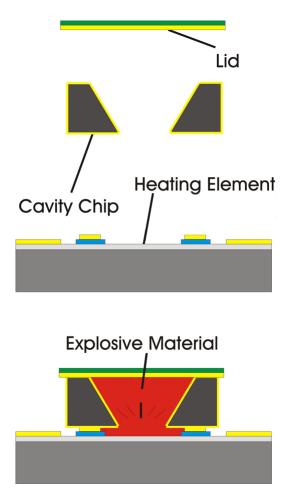


Batch Assembly

- Assembly/Packaging is Expensive
 - Each Part Must Undergo Many Steps
- Unique Capability
 - One Hundred Steps vs. Tens of Thousands
 - Reduce Cost by >10X

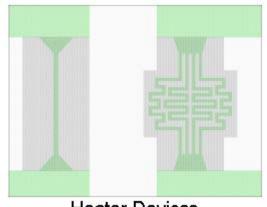
MicroAssembly Technologies




MEMS Initiators

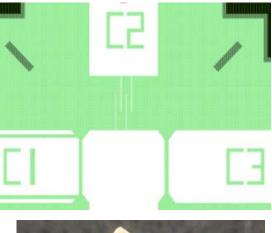
- M100 Drop-In Replacement
 - Batch Processing = Lower Cost, Higher Reliability
 - Commercial Applications
 - Mining, Construction, Oil Drilling
- Silicon Bridge Initiator
 - For Navy IHDIV S&A devices
 - Applications
 - 40 MM Grenades
 - Mine Countermeasure Dart

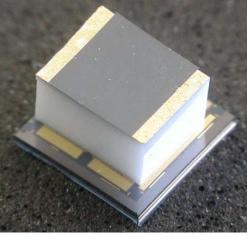
Initiators for M100 Replacement

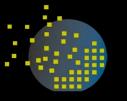

- Three Layer Design
- Tungsten Heating Element
- Batch Processes
 - Fabrication
 - Loading
 - Packaging

1st Generation M100 Replacement

- Pyrex Substrate
- Tungsten Bridgewire
- Fired at 3V off 100µF cap
- Pyrex Substrates Pose Process Issues

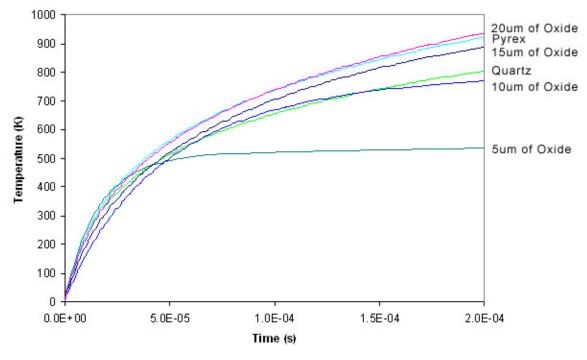

Heater Devices



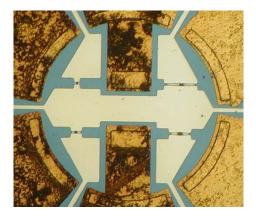

Microdetonator Devices

2nd Generation M100 Replacement

- Pyrex Substrates and Silicon Substrates
- Devices on Pyrex Substrate fired at 3V
- Devices on Silicon Substrate fired at 5V (thermal loss)

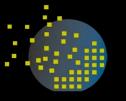


Heater Substrate Modeling

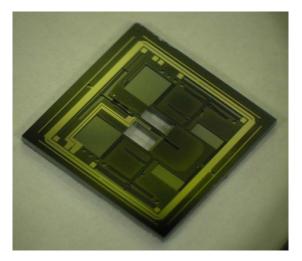

- Silicon with thick oxide layer possible
- Long CVD process is not ideal
- Quartz substrate more cost effective

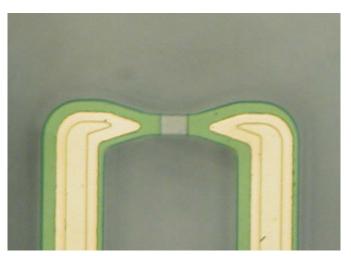
MicroAssembly Technologies

^{3rd} Generation M100 Replacement


- Quartz Substrate
- Lower parasitic resistances
- Higher energy dissipation over bridgewire
- Neyer Test on 3rd generation devices
 - 23 devices tested
 - μ =1.6088 V σ =0.0966 V
 - All-fire at 2.0 V
 - No-fire at 1.2 V

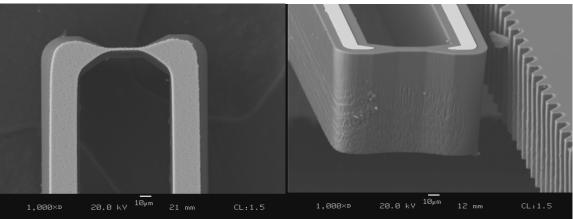
4th Generation M100 Replacement

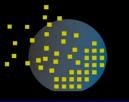

- Lower parasitic resistances
- Higher energy dissipation over bridgewire
- Neyer Test on 4th generation devices
 - 30 devices tested
 - μ =1.2097 V σ =0.0220 V
 - All-fire at 1.6 V
 - No-fire at 0.7 V
 - Dent into Aluminum: 0.020"



Initiators for S&A Device

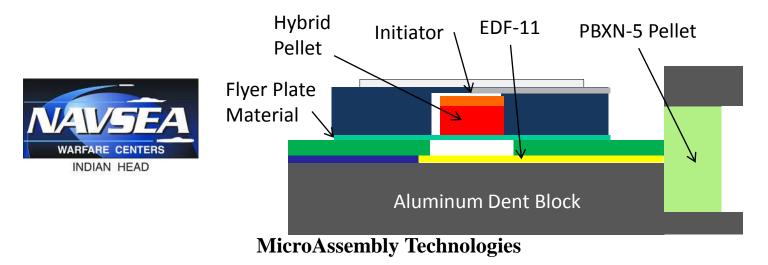
- Navy IHDIV S&A devices
- SOI MEMS Process for Safe & Arm Device
- Silicon Semiconductor Bridge (SCB) Initiator
- Integrated Initiators Fabricated in Batch Semiconductor Processes



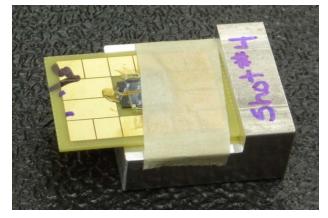


NSWC Silicon Bridge Initiator

- Composed of a silicon bridge
- Unique geometry used for MEMS S&A device (bridge volume ~ 20,000 μm^3 , dimensions in the 10's of μm)
- Bursts and forms plasma when voltage is applied
- Plasma crosses air gap (2-5 µm) to initiate primary explosive



Silicon Bridge Test Setup


- Navy IHDIV devices
- Explosive train feasibility study with various geometries tested
- Plasma initiates lead styphnate/silver azide pellet
- Sending metal flyer into and initiating EDF-11 strip (12-40 mils thick)
- EDF-11 charge transfers to PBXN-5 pellet

Silicon Bridge Testing

- Flyer successfully initiated thin layer of EDF-11 (15/17 times in various geometries / thicknesses)
- EDF-11 successfully initiated PBXN-5 pellet (4/6 times)
- Dent block analysis underway at NSWC IH

Initiator with Aluminum Dent Block

Dent Block After Successful Charge Transfer

Summary

- M100 Drop-In Replacement
 - More Reliable (σ =0.0220 V)
 - Meets Firing Requirements
 - All-Fire at 1.6 V off 100μ F cap
 - No-Fire at 0.7 V off $100\mu F$ cap
- Silicon Bridge Initiator
 - Successfully Initiated Explosive Train
 - Semiconductor processing: Firing characteristics can be easily changed per application
 - Fast Acting (µs range), Low Energy (~5 mJ), Very Efficient