High Speed Digital Infrared Imaging of the M201A1 Grenade Fuze Initiation Train
Presented to the NDIA Fuze Conference
May 2010
Co-Authors

• Dr. Ryan Olsen, T&E Board Chairman, NSWC Crane, Detachment Fallbrook, ESED

• Ms. Christine Grasinski, Mechanical Engineer, NSWC Crane, Detachment Fallbrook, ESED

• Mr. Jon Conner, Senior Scientist, National Technical Systems, Dana Point, CA

• Ms. Kathryn Hunt, Chemical Engineer, USMC MARCORSYSCOM, PM Ammo
Presentation Outline

• Background
 – M201A1 Pyrotechnic Delay Hand Grenade Fuze Description

• Approach
 – Digital IR Camera Description
 – Test Setup

• Test Results
 – Data Reduction Methodology

• Summary and Conclusions
M201A1 Fuze Description

- The M201A1 Fuze is used on a number of hand grenades including:
 - M18 Colored Smoke
 - AN-M14 Incendiary Thermite (TH-3)
 - AN-M8 HC (Hexachloroethane) Smoke
 - M73A CS Riot Control
 - M83 TA Practice (Teraphthalic Acid) Smoke
- Failures of these grenades to function are often attributed to M201A1 Fuze misfire
M201A1 Fuze Description

- Contains three stage initiation train:
 - Primer
 - Delay Column
 - Ignition Charge

- Functional Sequence
 - Remove of Safety Pin
 - Release of Safety Lever
 - Spring loaded striker impacts Percussion Primer
 - Delay Column initiated (2 sec delay)
 - Ignition Charge fires
Approach

• Typical thermal output assessment tools
 – Disassembly and dissection of energetics
 – Bomb Calorimetry
 – DSC (Differential Scanning Calorimetry)
 – TGA (Thermal Gravimetric Analysis)

• Approach
 – Measure thermal output of fuze initiation train without disassembly
 – Perform high speed IR imaging of surface of fuze body
 – Quantify surface temperature profile during function
Digital IR Camera Description

- FLIR Systems Thermovision SC4000 InSb Camera System
 - Wavelength: 3.0-5.0 µm
 - Resolution: 320 x 256 Pixels
 - Full Frame Rate: 420 Hz
 - Sensor Cooling: Stirling Closed Cycle
 - Lens: 100 mm InSb lens, f/2.3
 - Sensitivity: 0.018 ºC
 - Thermovision ExaminIR MAX Software

- Sub-Windowing allowed higher effective frame rate
 - Max frame rate used in test: 160 x 128 pixel frame @ 1324 fps
Test Setup

- Test Fixture Design
 - Rigid mount allowed viewing of the fuze body during function
 - Pneumatic actuator to remove safety pin
Test Setup

• Test Layout
 – High speed digital IR Camera System Positioned to allow fuze body to fill the field of view
Test Results

• Pyrotechnic Reaction Sequence – “Good Fuze”
Test Results

• Pyrotechnic Reaction Sequence – Misfire
Comparative High Speed Video Images

QE 365, Manufactured in 2000

QE 429, Manufactured in 1968
Data Reduction Methodology

Fuze Lot MEI85E001-005, QE #396
(approximately 24 years old at time of test)

Fuze Lot NYI-1633-12, QE #3
(approximately 47 years old at time of test)
Example Temperature Profiles
Summary and Conclusions

• High Speed Digital IR Camera Systems are effective in quantifying thermal output of pyrotechnic initiation trains

• Technique may be utilized on other pyrotechnic type items