

Detachment Fallbrook

High Speed Digital Infrared Imaging of the M201A1 Grenade Fuze Initiation Train Presented to the NDIA Fuze Conference May 2010

Detachment Fallbrook

<u>Co-Authors</u>

- Dr. Ryan Olsen, T&E Board Chairman, NSWC Crane, Detachment Fallbrook, ESED
- Ms. Christine Grasinski, Mechanical Engineer, NSWC Crane, Detachment Fallbrook, ESED
- Mr. Jon Conner, Senior Scientist, National Technical Systems, Dana Point, CA
- Ms. Kathryn Hunt, Chemical Engineer, USMC MARCORSYSCOM, PM Ammo

Detachment Fallbrook

Presentation Outline

- Background
 - M201A1 Pyrotechnic Delay Hand Grenade Fuze Description
- Approach
 - Digital IR Camera Description
 - Test Setup
- Test Results
 - Data Reduction Methodology
- Summary and Conclusions

M201A1 Fuze Description

- The M201A1 Fuze is used on a number of hand grenades including:
 - M18 Colored Smoke
 - AN-M14 Incendiary Thermite (TH-3)
 - AN-M8 HC (Hexachloroethane) Smoke
 - M73A CS Riot Control
 - M83 TA Practice (Teraphthalic Acid) Smoke
- Failures of these grenades to function are often attributed to M201A1 Fuze misfire

Detachment Fallbrook

M201A1 Fuze Description

- Contains three stage initiation train:
 - Primer
 - Delay Column
 - Ignition Charge
- Functional Sequence
 - Remove of Safety Pin
 - Release of Safety Lever
 - Spring loaded striker impacts Percussion Primer
 - Delay Column initiated (2 sec delay)
 - Ignition Charge fires

<u>Approach</u>

- Typical thermal output assessment tools
 - Disassembly and dissection of energetics
 - Bomb Calorimetry
 - DSC (Differential Scanning Calorimetry)
 - TGA (Thermal Gravimetric Analysis)
- Approach
 - Measure thermal output of fuze initiation train without disassembly
 - Perform high speed IR imaging of surface of fuze body
 - Quantify surface temperature profile during function

Detachment Fallbrook

Digital IR Camera Description

- FLIR Systems Thermovision SC4000 InSb Camera System
 - Wavelength: 3.0-5.0 µm
 - Resolution: 320 x 256 Pixels
 - Full Frame Rate: 420 Hz
 - Sensor Cooling: Stirling Closed Cycle
 - Lens: 100 mm InSb lens, f/2.3
 - Sensitivity: 0.018 °C
 - Thermovision ExaminIR MAX Software
- Sub-Windowing allowed higher effective frame rate
 - Max frame rate used in test: 160 x 128 pixel frame @ 1324 fps

Detachment Fallbrook

Test Setup

- Test Fixture Design
 - Rigid mount allowed viewing of the fuze body during function
 - Pneumatic actuator to remove safety pin

Detachment Fallbrook

- Test Layout
 - High speed digital IR Camera System Positioned to allow fuze body to fill the field of view

Detachment Fallbrook

<u>Test Results</u>

• Pyrotechnic Reaction Sequence – "Good Fuze"

Detachment Fallbrook

<u>Test Results</u>

• Pyrotechnic Reaction Sequence – Misfire

Detachment Fallbrook

Comparative High Speed Video Images

Detachment Fallbrook

Data Reduction Methodology

Detachment Fallbrook

Example Temperature Profiles

Summary and Conclusions

- High Speed Digital IR Camera Systems are effective in quantifying thermal output of pyrotechnic initiation trains
- Technique may be utilized on other pyrotechnic type items

