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Agenda

• Study motivation
• Introduction to spring/mass impact switches
• Derivation of spring/mass governing equations 
from first principles

• Results of study
• Derivation of mass/spring/damper system
• Results of parametric damping study
• Conclusions

5/19/2010

2

The information in this presentation is of general capabilities and open for 
public release
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Motivation

• Dynamic/static behavior revealed
– Switch closure is dependent on the amplitude and duration of 

shock

• Evaluate current testing practices
• Enable characterization of switch behavior 
analytically rather than empirically
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Impact Switches are Spring/Mass Systems
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Spring/Mass Motion Derived from First Principles 
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• The governing inhomogeneous Ordinary Differential 
Equation (ODE) is derived from Newton’s second law 
(ΣF=ma) 
– The spring mass system has a natural frequency of ωo=√(k/m)
– A half sine acceleration pulse is applied to the switch 
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ODE Solved via. Method of Undetermined Coef’s
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Equation governing 
position of mass

Homogeneous and particular 
solution are combined to form 
solution (y=yp+yh)



Switch Closure Before Pulse Ends

• Switch closes before acceleration pulse 
ends (∆t<π/ωo)

– Mass moves at spring/mass natural frequency
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Switch Closure After Pulse Ends

•Switch closes after acceleration pulse 
ends (∆t>π/ωo)
– Mass has sufficient kinetic energy to close the 

switch after the acceleration pulse ends.
– This scenario requires the solution of another 

ODE.
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Motion of Mass After Pulse Requires 
Another ODE Solution

• Solution to the homogenous ODE is completed 
using the method of undetermined coefficients. 
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Switch Closes at Various Acceleration Levels
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Approx half the steady 
state acceleration

Longer duration pulses 
approach steady state



Unusual Behavior of Spring/Mass is Explained

• If the mass has zero net displacement and at rest 
at the end of the pulse, the solution approaches 
the steady state solution
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Damping Was Also Studied

•Damping ratio was parametrically studied 
(0≤ζ<1)
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Damping Mitigates Oscillations
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Damping Suppresses the Spring/Mass Oscillations
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Conclusions

• Impact switches will close at a variety of different 
acceleration levels

• Closure of the impact switch becomes independent 
of duration as the pulse is lengthened

• Damping increases the acceleration level required 
to close the switch

• Damping mitigates the switch natural frequency
• Predicting the behavior of the impact switch 
enables L-3 FOS to reduce development time
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