Integrating Manufacturability into Fuze Design
How to blow the competition away
(above results not typical, individual results may vary)
• INTRODUCTION
 – The Fuze Development Center
• Common pitfalls in development
• Two design approaches
• Integrating manufacturability
 – Key concepts
• Infrastructure examples
• Summary
Fuze Development Center Mission: Accelerate New technology to the Field
• You know your project is in trouble when:
 – Cost, schedule and performance are equally weighted.
 – The plan to meet the schedule requirement assumes none of the planned risk factors are ever encountered.
 – Requirements change but cost and schedule do not.
 – Your successful concept demonstration leads management to believe they have a product.
 – The formula \((2 \times \text{Manpower} = \frac{1}{2} \text{Schedule})\) is applied.
• Common pitfalls that impact schedule & cost
 – Using concept development for product development
 • Misleading results
 • Schedule and cost overruns
 • Dead end projects
 – Insufficient documentation during development
 • Results cannot be reproduced
 • Lost progress / wasted money
 – Uncontrolled materials used in development
 • Results cannot be reproduced
 • Misleading results
– Uncontrolled development processes/methodology
 • Diminishes teamwork
 • Duplication of effort
 • Lack of focus

– Lack of teamwork
 • Results cannot be reproduced independently
 • Duplication of effort
 • Schedule delays

– Absence of configuration controls during development
 • Results cannot be reproduced
 • Schedule delays
 • Cost overruns (Rework)
• Lets get something straight !!!
 – Experimentation (A few of a kind)
 • Focus on answering questions (is it useful?, how does it work?)
 • Ideal for exploring new or unknown technology
 • Documentation nonexistent or incorrect due to uncontrolled changes
 • Limited or no direct product transition (product potential only)
 • Foundation for a new competency
 • Often mislabeled as prototyping
 – Prototype (The first of many)
 • Focus on fielding a new capability
 • Results reproducible by an independent party
 • Easily transitions to production
 • Foundation for spiral development / product improvement
Integrating Manufacturability
Two approaches to development

Concept Prototyping
A model for experimentation and development

Government

Entry → Design → Test → Results → Hardware

Private Industry

Contract → Design → Mfg Data → Manufacture → Test → Results → Hardware → Exit

Legend:
- Process Block
- Database
- Hardware Object
- Data object (electronic method)
- Document (human method)
Integrating Manufacturability
Two approaches to development

Integrated Producibility
An integrated model for experimentation and product development

- Design
- Test
- Results
- Technology Database
- Hardware
- Mfg Data
- Manufacture
- Entry
- Exit

Government
Private Industry

Legend

Author: Stephen Redington
Rev: 7
Date: 7 May, 2010
Integrating manufacturability in development

- Focus on the product more than the part
 - Products can be delivered, parts cannot
- Focus on documentation up front
 - Assume nothing, specify everything
 - Is there enough detail for someone else to fabricate the design
- Stay under control
 - Follow a design process
 - Enforce a mechanism for identifying prototype configurations
- Promote teamwork
 - Minimize schedule delays
 - Share and incorporate specialized knowledge
This is extra work. Why Bother?

Benefits
- Less rework down the road
- Shorter time to field
- Lower overall cost
- Improved uniformity / consistency of performance

Key concepts for success
- Information Identification
- A Self Documenting Design Process
- A Self Explanatory Design Process
- Feedback Controls
- Design for Reuse / Prevent rework
- Manufacturing Awareness
Integrating Manufacturability

Key Concepts

• Information Identity is Key to Producibility
 – Identify information first, then create it
 • Enables product level documentation up front
 • Don’t create information, then identify it (indicates lack of planning)
 – Promotes teamwork / Enables information sharing
 – Mechanism depends on enterprise philosophy
 • Stupid numbers
 – Imply no information about the item / No classification errors
 – Simple rule to create / No exceptions to deal with
 – Requires an IT system to be useful
 • Smart numbers
 – Embed information about the item / Subject to human error
 – Must follow rules to create / Exceptions create problems
 – May or may not require an IT system to be useful
• **Self Documenting Design Process**

 – Shared common templates are key
 - Establish drawing format pages for all CAD tools
 - Establish common fabrication notes for all applicable technologies
 - Use your ID system to manage

 – Integrate the design process with your ID system
 - Make getting an ID number the first step in design
 - Promote configuration control up front

 – Leverage IT to make it work
 - Avoid human factor road blocks
 - Generate your ID numbers automatically
 - Automate repetitive tasks
• Self Explanatory Design Process
 – Consider human factors to minimize error
 • Minimize misinterpretation of design information where possible
 • Eliminate superfluous / irrelevant information
 • Accurate schematic representation of all elements in assembly
 • Physical location on schematic implies physical grouping on a PCB although no rules exist in reality
 – Group all appropriate information together
 • One archive per item to be fabricated
 • Natural enforcement of configuration
 – Review designs like your seeing them for the first time
 • Is it clear and easy to understand
 • Is it complete
• Enable feedback control in development
 – Capture and retain cost information where possible
 • Enable design to cost
 • Use as a metric (not actual cost) due to volatile nature
 • Use to quickly focus attention to “big ticket” items driving cost
 – Inventory information
 • Avoid designing in new parts / maximize reuse
 • Reduce schedule and cost at development time
 – Tracking and monitoring
 • Manage product development by managing its physical (tangible) parts rather than work breakdown on the project schedule
 • Track metrics that are easily quantifiable (tangible)
 • Avoid metrics that involve time (process over schedule)
• Design for reuse / Prevent rework
 – Design history is the core competency of the enterprise
 • Provide a foundation for repeat work
 • Provide a foundation for new work
 • Success or failure is irrelevant, either result builds knowledge
 – Centrally locate Information
 • CAD tools share common libraries
 • CAD information is the foundation for the next iteration
 • Make historical data accessible
 – Correct erroneous information immediately
 • Think of the next design error you will be preventing
Increase Manufacturing Awareness

- What can be made versus what can be drawn
 - What can done by machine / What needs to be done by hand
 - When are tooling holes needed and how are they used
 - What is a reference datum
 - How are they used
 - Where should they be located

- What kind of machines are applicable / available
 - How do the machines work
 - Where do they get their reference
 - What kind of tolerances are they capable of

- What kind of tools are applicable / available
 - How are the tools used
Integrating Manufacturability Infrastructure

How to go from here......

To here
A universal ID numbering system
- Select the best compromise of number intelligence

Example of an Information identification scheme used by the FDC

Note:
Only 6 classes cover everything

This presentation is
FDC # 0602-00013
- Self Documenting Process

User gets an ID number from Web application

Web application sets up all appropriate file folders and CAD templates
Integrating Manufacturability

FDC Infrastructure Examples

• Self Explanatory Process

What CAD generates

What is really needed

Look from the recipient point of view
• Feedback control example (cost & inventory)

(Inv > 0 ; $ > 0)
Researched and used

(Inv = 0 ; $ > 0)
Researched and not used

(Inv = 0 ; $ = 0)
Not researched and not used

(Inv > 0 ; $ = 0)
Not researched but Used (not shown)
• Pay as much attention to little problems as you would the big problems
 – Unlike experimentation, one unsolved little problem will kill a product just the same as one big problem.
 – Solving little problems early can help you solve big problems latter.

• It’s easier said than done
 – Everyone agrees that integrating manufacturability up front is a good thing. How many actually do it?
 • Expect resistance on both sides: engineering and management
 – Infrastructure and Management support are essential.
Questions

Fuze Development Center

US Army RDECOM ARDEC Fuze Division
Picatinny Arsenal, NJ

Stephen Redington, PE
973-724-2127