Adaptive Imaging and Guided Fuse Technologies

Professor Ron Barrett
Director of the Adaptive Aerostructures Laboratory (AAL)
Aerospace Engineering Department
The University of Kansas, Lawrence, Kansas USA

AAL ...Backroom for the Innovation-Driven Aerospace Organizations of the world...

5th Annual NDI A Fuze Conference
Kansas City, Missouri 12 May 2010
Purpose:

Describe to the fuze community the state of the art in adaptive optics and flight control technologies
Outline:

I. Background & Brief Introduction to Adaptive Materials

II. History of Programs

III. New Classes of Adaptive Actuators

IV. Current & Future Programs Enabled
Adaptive Materials

... A Paradigm Shift

Old Paradigm:
Structural deformations indicate that a given loading state is occurring and must therefore be accommodated.

New Paradigm:
Structural deformations can be controlled and can therefore be used to enhance mission effectiveness.
Adaptive Materials: A (Very) Brief Introduction

What are Adaptive Materials & Structures?

- Conventional
- Adaptive
- Intelligent
- Sensory
- Controlled

Background History New Actuator Classes Future Programs
Adaptive Aerostructures: A (Very) Brief Introduction

- Most Useful Classes of Adaptive Materials:
 - Shape-Memory Alloy -
 High Deflection, Slow, Lots of Power
 - Variable Rheology Materials -
 Good for clutching and changing stiffness
 - Piezoceramics -
 Very Fast, Low Power
 - Optically Adaptive Materials -
 Newest class, controllable color, luminosity, reflectivity, opacity
Adaptive Flutter Test Surfaces

- **Solid State**
- **Order of magnitude less device weight**
- **Order of magnitude less installation weight**
- **Half the acquisition price of the conventional system**
- **Half the installation price and downtime of the conventional system**
- **Exacting Phase Control**
- **Flight Rated to Mach 3**
- **Half the flutter insurance rates**
First 20 years of Programs with Lineage to Flying Adaptive UAVs
Overview of Programs with Lineage to Flying Adaptive UAVs

- Fixed-Wing UAV
- Convertible UAV
- Rotary-Wing UAV
- Hard-Launch Munition
- Gravity Weapon
- Missile

Background History New Actuator Classes Future Programs
Brief Guided Round History

M712 Copperhead 1975

XM 982 Excalibur & ERGM
Guided Round History

Reducing the caliber...

M 247 Sergeant York 1977 - 1985
Guided Round History

What's needed in a low caliber FCS actuator?

What is needed in such a flight control actuator???

- Setback tolerance: 5,000 - 200,000g’s
- Balloting, setforward, ringing impervious
- Compatible with supersonic control effectors
- Not affected by atmospherics (rain, dust, dirt, snow, etc.)
- High feedback command fidelity maintained during all flight phases
- 20 yr storage life
- -40 to +145°F
- Lightweight (<1g), Low Volume (<1cc), Low Power (10’s of mW)
- High bandwidth (>200 Hz)
- Production shipset costs in single dollars... at most
Adaptive Materials Actuation... Different

Hydraulic/Pneumatic

- Pressure Source
- Command Signal
- Position Feedback
- Actuator
- Push arms, linkages etc.
- Effector

Electromagnetic

- Electrical Energy Source
- Command Signal
- Position Feedback
- Motor
- Gear stages
- Push arms, linkages etc.

Adaptive

- Electrical Energy Source
- Command Signal
- Adaptive actuator part of primary structure
- Position Feedback
US Army FOG-M FCS...
One possible solution... from the MAV world

The 1st Micro Aerial Vehicle (MAV) -- by the DoD CounterDrug Technology Office 1994 - '98

Enabled by Flexspar Piezoceramic Stabilators

Mission Profile:

- Takeoff
- Underground Loiter > 24hr
- Shutdown
- Descent
- Hover out 20m
- Ascent
- Hover in 20m

Stabilator Characteristics:

- total mass 5.2g
- actuator mass: 380 mg
- max. static deflections: ±11°
- max power consumption: 14 mW
- pitch corner frequency: 47 Hz
- first natural frequency in pitch: 23 Hz
Advanced UAVs: Driving the need for Adaptive Actuators -- faster, lighter, stronger

Adaptive Surfaces vs. Conventional Servos

- 96% reduction in power consumption
- 16x increase in bandwidth
- 99.2% decrease in slop
- 12% OWE savings
- 8% MGWTO savings
Gravity Weapons
Interceptors

SMDC HITT Program 1997 - 2000

Hypersonic
5ms Response
Pitch, Roll, Yaw control
Guiding Lower Caliber Rounds... More History

Barrel-Launched Adaptive Munition (BLAM) Program 1995 - '97

USAF/AFRL-MNAV

- Aerial Gunnery (20 - 105mm)
- Extend Range
- 2g maneuver

(Eglin AFB tests ‘97)

(Mach 3.3 tests ‘96-'97)

- Increase hit probability
- Increase probability of a kill given a hit
- Reduce total gun system weight fraction
Guiding Small Arms Rounds... More History

TACOM-ARDEC (Picatinny-APG) Phase I SBIR
• Guide 50 cal sniper rounds against targets moving up to 100km/hr
• 10cm dispersion @2km under 99% winds, up to 10% grade
Guiding Small Arms Rounds... More History

Range-Extended Adaptive Munition (REAM) IRAD 1999 - 2001
BAT-Lutronix Corp. developed supersonic piezoelectric FCS actuators
Guiding Small Arms Rounds... More History
Shipborne Countermeasure Range-Extended Adaptive Munition (SCREAM) Program 2001 - ‘03
DARPA-TACOM ARDEC SBIR Phase II

- Change from sniping to countering high jinking rate sea-skimming missiles
- Change from 0.50 caliber to 40mm
- Change from ~2g’s of maneuver authority to many tens of g’s
- Entire FCS passed 41,000g shock table testing
Guiding Small Arms Rounds... More History

Shipborne Countermeasure Range-Extended Adaptive Munition (SCREAM) Program 2001 - ‘03
DARPA-TACOM ARDEC SBIR Phase II

SCREAM Actuator Challenges:

• Long actuator bay length
• Difficulty pushing beyond 50,000g’s
• Low deflection -- ~ok for sniper, not ok for SCREAM

Hmmm...
Other Adaptive FCS Efforts

Rabinovitch & Vinson 2000 - present

again... low authority
can't survive balloting, setback unsteady aero...

Now Where???
Guiding Small Arms Rounds... The Ephphany!

Discoveries from Europe... 2003 - 2004

\[F = k\Delta x \quad F \neq k\Delta x \]

Eureka!
PBP Actuators: Real Performance!

- Fraction of the weight, size & power consumption of US Actuators (i.e. much smaller actuator bays)
- 300+% deflection increases
- Higher bandwidth
- Lower cost
- Lower g-sensitivity

Worldwide patent application: 18 Jan. 2005
PBP Actuators: Real Performance!

Assembled, functioning actuator:
PBP Actuators: Real Performance!

Assembled Hard-Launch Capable Actuator FCS Units:
PBP Actuators: Real Performance!

Assembled Hard-Launch Capable Actuator FCS Units:
PBP Actuators: Fastest around...
Best performance in the adaptive structures industry:

- 1kHz equivalent bandwidth
- Driving 0.40/.50 cal Mach 4.5 canards

Input command top actuator element +58V steady
Input command bottom actuator element -8V steady

End rotation angle
PBP Actuators: Real Performance!

Mach 3 Testing - FCS works well!
PBP Actuators: Moving up in caliber - Easy!
Mortar Fuses

Howitzer Fuses
PBP Actuators: Moving up in caliber – Easy!

Fuse PBP FCS Designs

Designs to drive both blade and grid-fin control surfaces full pitch, roll & yaw from apogee for ~8cc volume, through 100 Hz, <1W
Families of Steered Piezoelectric Enhanced Adaptive Rounds (SPEARs)

- Roll Stabilized Recon. SPEAR
- Full Control Recon. SPEAR
Roll Stabilized SPEAR

“Look Over the Hill”
Supersonic MAV mission tungsten nose

Tactical Benefits:
• Fastest way to get local reconnaissance images
• Totally impervious to weather/gusts
• ~ $20/round

Background History New Actuator Classes Future Programs
Roll Stabilized Recon. SPEAR

Necessity of Roll Stabilization

Smooth bore/obturating band launch 20mm:
roll rate > 8rps

flare
12Ga
Full Control Recon. SPEAR

Full Battlefield Reconnaissance

40,000 ft (12km)
20mm (16mm) saboted SPEAR
Mach 0.8, 15° launch

Friendly Fire reduction/elimination

tungsten nose

camera

rollsonde

active fins

Background History New Actuator Classes Future Programs
Micro Optics Steering w/ piezo

±2° through 1kHz
fully proportional
sizable down to 20mm rounds
hardened through 10,000g's
solid state
20+yr life
Questions?

... and a few interesting facts about Kansas...

Hilly, wooded Lawrence, home of the University of Kansas
45 min. West of Kansas City
A very blue dot in a very red state: Lawrence ~ Kansas as Austin ~ Texas

Transportation Hub, Flight Test
Light Aircraft Manufacturing

Avionics
R&D, Flight Test, Aircraft Design
Missiles, Munitions, UAVs

Airline Aircraft Maintenance
Insurance
Spares
Interiors
Avionics
Salvage

Airframe Design, Development, Production

2/3 of the aircraft made in the Western World are made in Kansas
Aerospace = largest manufacturing industry of the state
40,000 - 70,000 aerospace workers
More aerospace economic volume per capita than any other state

Hilly, wooded Lawrence, home of the University of Kansas
45 min. West of Kansas City
A very blue dot in a very red state: Lawrence ~ Kansas as Austin ~ Texas

Transportation Hub, Flight Test
Light Aircraft Manufacturing