DTRA Counter WMD Technologies Fuzing & Instrumentation Technology Overview Presented at 54th Annual NDIA Fuze Conference May 2010

Danny R. Hayles

APPROVED FOR PUBLIC RELEASE, DTRA PA CONTROL #10-213 (7 Apr 2010)

- Mission
- Requirement for Hard Target Fuzing
- Current Fuzing and Instrumentation Technology Thrusts
- Summary

DTRA Mission

- Mission:
 - ...reduce the threat to the United States and its allies from Weapons of Mass Destruction (CBRNE) by providing capabilities to reduce, eliminate, and counter the threat, and mitigate its effects.
- Functions:
 - Conduct RDT&E programs...in areas related to WMD and designated advanced weapons to include...WMD-related targets and the entire class of hard and deeply buried facilities.
- Vision:
 - Develop, test, and demonstrate to the Warfighters reliable and effective solutions to defeat WMD and WMD-related functions protected in Hard and Deeply Buried Targets

Hard & Deeply Buried Target (HDBT) Defeat Critical to Counter WMD Mission

- Use of HDBTs is widespread among both hostile states and terrorists to protect WMD and WMD-related functions including:
 - Production, storage, research
 - Delivery systems
 - Command and control
 - National/terrorist leadership

MOST VALUABLE ASSETS

You can't defeat WMDs, if you can't defeat HDBTs!!

You can't defeat HDBTs, if the fuze does not survive!!

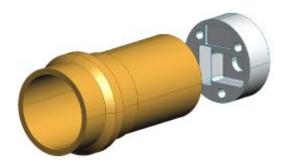


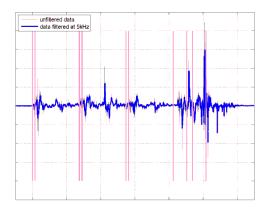
Fuzing and Instrumentation Technology Vision

- Develop and demonstrate innovative SURVIVABLE fuze technologies to support the defeat of WMD related facilities
 - Fuze Harsh Environment Characterization
 - Sub-Scale Survivability Test Protocol
 - Micro-DEMON
 - Fuze Diagnostic Recording
- Develop SURVIVABLE instrumentation packages

to support development of new fuze/fuze technologies

- Robust Fuzewell Instrumentation System (RFIS)
- 3-Axis DTRA Data Recorder (3DDR)





APPROVED FOR PUBLIC RELEASE Fuze Harsh Environment Characterization

- Fundamental understanding of forcing functions on the fuze and fuze components
- System level aspects being pursued within the larger Community

Bottom Line: Need to be able to predict and test the multi-axis loads on fuzes & fuze components

APPROVED FOR PUBLIC RELEASE **Sub-Scale Survivability Test Protocol**

- Collaborating with AFRL/RW to establish test methodologies for replicating desired shock spectrum
- Establish survivability test protocol utilizing various lab & field apparatus

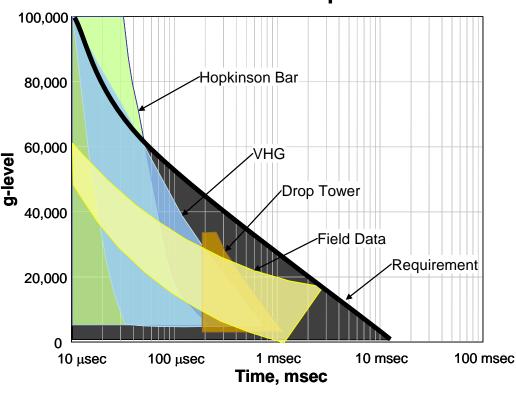


Photo Courtesy of AFRL/RWMF Public Releasable: AAC/PA 03-496

Notional Shock Spectrum

APPROVED FOR PUBLIC RELEASE FMU-152 Baseline Sub-Scale Test Survivability Assessment

- Collaborating with AFRL/RW and Kaman to establish an FMU-152 baseline survivability for sub-scale test protocol
- FMU-152 sub-scale test survivability limits will be utilized as qualitative baseline for future fuze/fuze components

Photos Courtesy of AFRL/RWMF (VHG Machine) Public Releasable: AAC/PA 03-496 and Kaman's Website: <u>http://www.kamanaero.com/fuzing.html</u>

DEMON (Design for Efficient Miniaturization of Novel Fuzing)

- Collaborating with Sandia to explore level of miniaturization achievable for electronic in-line fuzing using COTS components, architectures and packaging technologies
- Miniature post-impact module benefits
 - Increased survivability
 - Increased reliability through redundancy
 - Common fuze components
 - Distributed architectures

Active Silicon as a Percentage of Package Area for Different IC Packaging Technologies

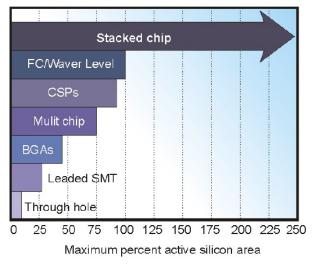
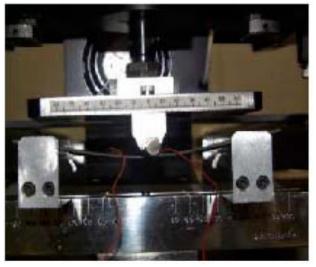
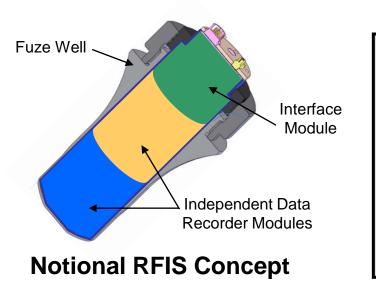



Photo courtesy of http://www.smta.org/files/Pan_ Pacific_2007_Fjelstad.pdf

Fuze Diagnostic Recording (FDR)

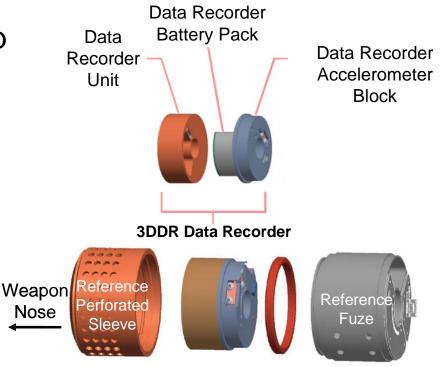
- Collaborating with Sandia to improve reliability and survivability of hard target fuzes by developing scientific understanding of mechanical & electromechanical behavior of critical components under high shock
 - Performance characterization for nominal environments and relevant functions
 - Repeat testing through gradually increasing stress (high-g) environments
 - Develop models of component performance to reflect high-g effects
- High voltage firing capacitors selected as initial component to assess/model



Photos Courtesy of http://www.amd.com/usen/assets/content_type/Dow nloadableAssets/Pbfree_Boardlevel_reliability_study.pdf

APPROVED FOR PUBLIC RELEASE **Robust Fuzewell Instrumentation System (RFIS)**

- Collaborating with AFRL/RW to develop a robust data recorder instrumentation package with redundant internal data recorders to fit in standard 3" fuzewell
 - BAA Announcement Posted 10 Feb 2010
 - Solicitation Number: BAA-RWK-10-0004


RFIS General Features

- 3" Data Recorder Instrumentation Package
- Size & weight of current legacy fuzes
- Standardized Robust/Reliable Interfaces
- Cantilever or Compression Mounted
- Independent Data Recorders
 - Threshold of 2
 - Goal of 3

3-Axis DTRA Data Recorder

- Collaborating with Sandia to develop survivable booster cup recorder
 - 1st Generation 3DDR Design
 - 3 Unit Design
 - Replaceable accelerometers
 - Successful laboratory and field testing
 - 3DDR-Advanced Miniaturization (3DDR-AM)
 - Utilize DEMoN philosophy to achieve miniaturization
 - Universal Booster Cup Compatible
 - Retain full 3DDR functionality
 - Smaller and lower power
 - Provides foundation for 3-AMP replacement

Photos Courtesy of Sandia National Laboratory Public Releasable: SAND # 2009-0918 P

Summary

- Hardened or deeply buried facilities are becoming:
 - More important to potential adversarial nations and non-national organizations
 - Harder to defeat
- Capability to defeat HDBTs is critical to Counter-WMD mission
 - Fuze survivability is essential to defeating HDBTs
 - Smart post-impact burst point control required
- Fuze harsh environment characterization is essential
 - Predictive capability for fuze/fuze component survivability
 - Development of robust sub-scale multi-axis test protocol
 - Defining robust full-scale tests compatible with limited resources
- Focused on fuze & instrumentation survivability in harsh environments
 - Developing novel fuze diagnostic recording capability
 - Efficient miniaturization for novel fuzing

The Fuzing Evolution – Smaller, Smarter, Safer, and more <u>Survivable</u>"