KONGSBERG

CROWS
Stabilization and Accuracy for today’s Warfighter
Bo Barbour
Kongsberg Protech Systems

WORLD CLASS – through people, technology and dedication
- The history of KONGSBERG
- Background of the RWS
- Stabilization and Accuracy
- Key Performance Parameters
- The Future of RWS

WORLD CLASS – through people, technology and dedication
The History of Kongsberg

- The city of Kongsberg founded in 1624 by King Christian IV based on the discovery of silver in the area.
- The silver mine was the biggest industry in Norway and constituted about 20% of the income. In 1814 the Kongsberg weapons factory was founded.
- The Krag Jørgensen rifle was introduced in 1892, and became soon a big hit for the weapon factory. The US Army bought about 500,000 rifles, and it soon became one of the biggest export products for Norway.
- Kongsberg Weapons factory played a major role in post war recovery in Norway, after World War-2 renamed the Norwegian Defence Industry, and as we know it today, KONGSBERG.
First International Success

Krag-Jørgensen

The **Krag-Jørgensen** is a repeating bolt action rifle designed by the Norwegians Ole Herman Johannes Krag and Erik Jørgensen in the late 19th century. It was adopted as a standard arm by Denmark, the United States and Norway.

The Krag-Jorgensen Rifle in Rimmed .30 Army round found use in the Boxer Rebellion, the Spanish-American War and the Philippine-American War. In this later war the rifle was referred to in a song popular with U.S. troops with a verse running:

Damn, damn, damn the Filipinos!
Cut throat murdering ladrone!
Underneath the starry flag,
Civilize them with a Krag,
And return us to our beloved home.
Why a Remote Weapon Station
The Main Focus of Protech Systems:
- PROTECTOR Family of Remote Weapon Station (RWS)
- Common Remotely Operated Weapons System (CROWS)
- PROTECTOR Medium Caliber Remote Weapon Station (MC RWS)
- M151 PROTECTOR
- XM153 PROTECTOR CROWS
- PROTECTOR Lite
- PROTECTOR Super Lite
Vehicle Integrations
RWS Family

- Prototype 1997
- Kosovo 1998
- M151 2000
- M151 Javelin 2001
- M151 A1 2003
- M151 A2 2004
- NM221 2005
- LITE 2006
- SP 2007
- CROWS II 2008
- MC RWS 2009
What is the Remote Weapon System (RWS)?

- The RWS is designed to be mounted on top on a variety of combat vehicles and is remotely operated by an operator located inside the vehicle compartment, giving complete armored protection from direct enemy fire.

- The remote operation of the RWS is carried out by two operating components,
 - Fire Control Unit (FCU)
 - Control Grip (CG).

- The system also has remote weapon charging capability for cocking of the weapon as well as firing.

- The tracking and control capabilities of the RWS provide a high first-round hit probability against stationary and moving targets.

- The RWS can also be operated manually if required.

- Integrated Machine Guns:
 - MK-19 40mm
 - M-2 .50 Cal
 - M-240 7.62mm
 - M-249 5.56mm
Main Parts

- RWS consists of following main parts:
 - Weapon Station (WS)
 - Fire Control Unit (FCU)
 - Control Grip (CG)
 - Connection Cables
 - (W1) Power and signal cable from FCU to CG
 - (W2) Data signal cable from FCU to WS
 - (W3) Power and video cable from FCU to WS
Line Replacement Units (LRU)

- Sight Servo Assembly (SSA)
- Cocking Actuator (CA)
- Soft Mount (SM)
- Amm Box
- Left Side Support Assembly (LSSA)
- Laser Range Finder (LRF)
- Thermal Imaging Module (TIM)
- Visible Imaging Module (VIM)
- Main Frame Assembly (MFA)
- Weapon Station (WS)
- Right Side Support Assembly (RSSA)
- Fire Control unit (FCU)
- Control Grip (CG)
Principal Factors in Stabilization and Accuracy

- Machine gun barrel condition – temperature and wear
- Soft recoil mount – attenuates recoil
- 4 axis servo system
- Stabilization on the move
- Lead angle compensation – determines lead on the move
- Fire Control unit – ballistic solution software
- Hand Control – man machine interface
Bore Sighting

- Bore sighting is the procedure of defining the position of the sight where the axis of bore and the line of sight are perfectly aligned.
- This position is stored by the system in the non-volatile memory of the FCU. At later start-ups, the system reads this position from that memory.
- Default values are used at power-up when no position is stored in the memory.
- This position is used as the basis for positioning the weapon according to the calculated ballistics for the defined target range and current ammunition.

NOTE!
Whenever a new weapon is mounted or a new FCU is connected, the bore and the line of sight must be aligned by performing the bore sighting procedure.

NOTE!
If one of the sensors is bore sighted, it is not necessary to do the same with the other sensors.
XM153 CROWS II – The Next Evolution
QUESTIONS ?

WORLD CLASS – through people, technology and dedication