Medium and Large Caliber Propellant Solutions

May 19, 2010

Bob Pulver – St. Marks Powder

Frederick Paquet - Valleyfield
GD-OTS Propellant Capabilities

GD-OTS
St. Marks Powder
Producing Propellant Since 1970
1974 Acres,
of Buildings - 137
of Employees - 350

GD-OTS Canada
Valleyfield
Producing Propellant Since 1941
1112 Acres,
of Buildings – 180
of Employees - 420
Medium and Large Caliber Propellant Solutions

- St. Marks Powder HYBRID Propellant for 30mm Lightweight Ammunition

- St. Marks Powder and Valleyfield Extruded/BALL POWDER® Propellant Mixed Charge Concept

- Valleyfield M-14 Replacement Effort for 120mm Tank Trainer Ammunition
The Army has experienced numerous M230 Chain Guns failures with 30mm M789 HEDP ammunition when exposed to hot temperatures over extended periods of time.

The Apache's 30 mm x 113 automatic M230 chain gun
Overview

- GD-OTS St. Marks Powder is currently developing a single perf, HYBRID propellant to replace WC 855 BALL POWDER® Propellant to with improved hot temperature storage properties (ballistic stability)
 - Meets interior ballistic specifications
 - Meets fire control goals
 - Expected to have very good barrel wear/life
The State-of-the-art in Propellant Technology for Small, Medium and Large Caliber Ammunition

Ultimate ballistic efficiency achieved by combining perforated geometry with burn rate modifiers (deterrents)

Deterrent Layer - applied to tailor the burn rate for specific applications to optimize ballistic efficiency

Deterrent Layer – Lowers overall flame temperatures and provides a relatively cool burning outer layer
Addresses Needs for 30mm M788/M789 Ammunition

- **Superior Robustness to Hot Temperature Exposure**
 - Excellent High Temperature Storage Results
 - No increase in peak pressure after conditioning
 - Dual Stabilizers used, including Akardite II for long shelf life

- **Current off-the Shelf Product ("Drop-In Replacement")**
 - Commercial variant of SHP 831 already in production
 - Economical - using conventional processes and low cost materials
 - Excellent temperature sensitivity
 - Excellent ignition properties
 - Excellent IM properties
30mm Lightweight HYBRID Data

Fire Control Solution: Velocity vs. Temperature Variation

- Velocity (m/s)
- Temperature (°C)

Graph showing velocity variation with temperature for different specifications and the HYBRID solution.
HYBRID Propellant Operating Pressures in LW 30mm after Extended High Temperature Exposure at 71°C (160°F)
Improved Propellant: HYBRID SHP 831

- HYBRID SHP 831 propellant represents an economical state-of-the-art propellant

- Currently in production for commercial applications
 - Loading rate between BALL POWDER® and Extruded Propellants (little if any impact on ammunition loading equipment or capacity)

- St. Marks Powder HYBRID propellants are domestically produced in existing production facilities
St. Marks Powder and Valleyfield Extruded/BALL POWDER® Propellant Mixed Charge Concept
High Performance Propellant Technology

High Loading Density
+ Ballistic Efficiency
= High Performance

The ability to achieve higher charge weights combined with the appropriate burn progressivity (ballistic efficiency) will yield higher performance capabilities.
Mixed Propellant Charge - Objective

Valleyfield and St. Marks Powder Objective:
Demonstrate this concept in ammunition to achieve improved ballistic performance

- Chose 30mm GAU-8/A PGU-15/B TP ammunition as a Baseline
- In 2009, Valleyfield started with a 7-Perf, surface deterred, extruded propellant
- Blended in a small diameter, surface deterred, BALL POWDER® propellant
- Loaded with vibration

Achieved 17% charge weight increase with excellent ballistic efficiency, very good standard deviations and low flame temperature
Mixed Propellant Charge

- In 2010, Valleyfield tested a 19-Perf, surface deterred, extruded propellant
 - Blended in a small diameter, surface deterred, BALL POWDER® propellant
 - Loaded with vibration

Achieved 19% charge weight increase
Mixed Charge Propellant Concept

7-Perf Extruded and BALL POWDER® Propellant

19-Perf Extruded and BALL POWDER® Propellant

+17% charge weight over loose

+19% charge weight over loose
30mm Ballistic Results - Projected

Baseline @ 145 grams = 3,340 fps

1st Iteration Mixed Charge @ 170 grams = 3,623 fps

Represents an 18% increase in Kinetic Energy +283 fps

Planned Iteration Mixed Charge @ 188 grams = 3,730 fps

Represents a 25% increase in Kinetic Energy +390 fps
Mixed Propellant Charge – Future Work

Future Work

- Maximize charge weights
 - *Geometry and Loading Studies*
- Maximize ballistic efficiency with deterrent technology
- Optimize standard deviations and temperature sensitivity
 - *Propellant chemistry (Compatibility)*
 - *Ignition system*
- Ensure excellent long-term, hot temperature ballistic storage
- Ensure excellent IM properties
Valleyfield M-14 Replacement Effort for 120mm Tank Trainer Ammunition
Introduction

- The main processing solvent of M14, diethyl ether, has a strong affinity for NC.
- Diethyl ether is also known for its high flammability.
- A number of tank fires in training exercises have put in question the use of M14 propellant in 120mm training ammunition.
Residual solvent reduction

Double base formulation
- Easier solvent removal

NG free formulation
- Better insensitivity
- Lower flame temperature

Potential M14 replacement candidate formulation
TMDB formulation

- “T”EGDN
- “M”odified
- “D”ouble
- “B”ase

An NC based formulation that is plasticized with tri-ethylene glycol dinitrate (TEGDN)
TEGDN

- Extremely insensitive (impact sensitivity almost 100 times less than DEGDN).

- Better thermal stability then NG and DEGDN.

- Not a vasodilatator.

- Better gelatinizing agent to NC then NG.

- Less mobile then DEGDN and NG.

Fedoroff B T, Sheffield O E, Kaye S M, Encyclopedia of Explosives and Related Items, Picatinny Arsenal.
Processing solvents

A mixture of acetone and ethanol is used in the manufacturing process. These solvents are much safer than the usual diethyl ether used in M14 manufacturing.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Diethyl ether</th>
<th>Acetone</th>
<th>Ethyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEL, % V/V</td>
<td>1.9</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Explosivity range (UEL-LEL), % V/V</td>
<td>34.1</td>
<td>10.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Flash point, °F</td>
<td>-49</td>
<td>0</td>
<td>24.8</td>
</tr>
<tr>
<td>Vapour pressure, mm Hg</td>
<td>440</td>
<td>180</td>
<td>75</td>
</tr>
</tbody>
</table>

Given that the TMDB formulation contains 30% of plasticizer, the amount of required solvent in the process is reduced by 50% to 70% (10-15% at extrusion instead of 30-35% for M14).
Residual solvents

With TMDB propellant, the hydrophobic plasticizer (TEGDN) will block the hydroxyl groups and drive off the solvents.
Mechanical properties

<table>
<thead>
<tr>
<th>Grain Type</th>
<th>Compressive Modulus (Gpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDB</td>
<td>1.01 ± 0.18</td>
</tr>
<tr>
<td>JA2</td>
<td>0.722</td>
</tr>
<tr>
<td>M14</td>
<td>2.79</td>
</tr>
<tr>
<td>M30A2</td>
<td>1.638</td>
</tr>
<tr>
<td>XM39</td>
<td>3.07 ± 1.27</td>
</tr>
</tbody>
</table>

Mechanical properties are similar to JA2
Insensitivity testing

- A shape charge jet attack test yielded a Type III reaction on a 105mm tank cartridge with 9.9 Lb of TMDB propellant.

- An 84mm (Carl Gustav) shape charge jet and a brass cartridge case were used.
TMDB configurations

19 Perforations hexagonal rosette

1 Perforation cylindrical

7 Perforations cylindrical

Surface moderation has also been applied to these geometries when necessary in order to increase the ballistic efficiency.
Ballistic testing

- All testing was done as part of the original M14 replacement effort between 2005 and 2007.

- TMDB has been tested successfully in the 120mm M865 tank cartridge.

- In the case of the 120mm M1002, the right temperature slope was obtained but the geometry has to be optimized in order to decrease the pressures.
Future efforts

- As part of the current M14 replacement program, TMDB will be used as a potential solution.

- The goal is to confirm the previous M865 success and lower the pressures in the M1002 application through a change of geometry.

- All candidates shall have a residual solvent level lower than 0.1%.

- All testing for the first phase of this program is scheduled to be completed by August 2010.