

Comparing Scrum And CMMI How Can They Work Together

Neil Potter

The Process Group help@processgroup.com www.processgroup.com

© Copyright 2004-2010 The Process Group. All rights reserved.

www.processgroup.com

1

Agenda

- Definition of Scrum
- Agile Principles
- Definition of CMMI
- Similarities and Differences
- CMMI and Scrum Mapping
- How About Other Components of Level 2?
- How About Level 3?
- Summary

Full comparison at: http://www.processgroup.com/pgpostmar09.pdf

Definition of Scrum

Scrum is a pre-defined development lifecycle based on Agile principles.

© Copyright 2004-2010 The Process Group. All rights reserved.

Agile Principles - 1

- Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
- ĺ₽•
- Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.

Source: http://agilemanifesto.org/

Agile Principles - 2

- **I**
- The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
- Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity -- the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

Definition of CMMI v1.2

Level 5 Optimizing	Focus Continuous Process Improvement	Process Areas Organizational Innovation and Deployment Causal Analysis and Resolution	Quality Productivity
4 Quantitatively Managed	Quantitative Management	Organizational Process Performance Quantitative Project Management	
3 Defined	Process Standardization	Requirements Development Technical Solution Product Integration Verification Validation Organizational Process Focus Organizational Process Definition +IPPD Organizational Training Integrated Project Management +IPPD Risk Management Decision Analysis and Resolution	
2 Managed	Basic Project Management	Requirements Management Project Planning Project Monitoring and Control Supplier Agreement Management Measurement and Analysis Process and Product Quality Assurance Configuration Management	Risk Powork
1 Initial			Rework

• CMMI is a collection of practices that an organization (software, hardware and IT) can adopt to improve its performance.

- Maturity Level 2 Process Areas focus on change and project management.
- Maturity Level 3 focuses on engineering skills, advanced project management and organizational learning.

Model Source: http://www.sei.cmu.edu/cmmi/tools/

- Process is an amorphous entity
- Visibility into the project's process is limited
- Difficult to establish the status of the project's progress and activities

THE

PRC

GR(

PRC GR(**Visibility Into the Process** Level 2 Major process phases OUT IN

- Customer requirements and work products are controlled
- Basic project management practices have been established
- Management controls allow visibility into the project on defined occasions
- Management reacts to problems as they occur

THE

Visibility Into the Process Level 3

- Tasks in the project's defined process are visible
- Accurate and rapid status updates are available
- Management proactively prepares for risks that may arise

THE

PRC

GR(

Similarities and Differences

Level	Focus	Process Areas	Quality	
5 Optimizing	Continuous Process Improvement	Organizational Innovation and Deployment Causal Analysis and Resolution		(
4 Quantitatively Managed	Quantitative Management	Organizational Process Performance Quantitative Project Management		
3 Defined	Process Standardization	Requirements Development Technical Solution Product Integration Validation Organizational Process Focus Organizational Process Definition +IPPD Organizational Training Integrated Project Management +IPPD Risk Management Decision Analysis and Resolution		
2 Managed	Basic Project Management X. 47%	Requirements Management Project Planning Project Market And Project Market And Project Market And Product Quality Assurance Configuration Management	Risk	Ń
1 Initial			Rework	

THE

PRC

GR(

© Copyright 2004-2010 The Process Group. All rights reserved.

In Scrum

Level 3 coverage very dependent on how YOU define the phases

- Some requirements
- Some design
- Coding
- Some test
- Some lessons learned
- Most Requirements Management
- Most Project Planning
- Most Project Monitoring/Control
- Most Measurement Analysis (effort and progress)

CMMI and Scrum Mapping

Requirements Management

REQM	CMMI Practice	Scrum Practice
SP 1.1	Develop an understanding with the requirements providers on the meaning of the requirements.	 Review of Product Backlog (requirements) with Product Owner and team.
SP 1.2	Obtain commitment to the requirements from the project participants.	 Release Planning and Sprint Planning sessions that seek team member commitment.
SP 1.3	Manage changes to the requirements as they evolve during the project.	 Add requirements changes to the Product Backlog. Manage changes in the next Sprint Planning meeting.
SP 1.5	Identify inconsistencies between the project plans and work products and the requirements.	 Daily Standup Meeting to identify issues. Release planning and Sprint Planning sessions to address inconsistencies. Sprint Burndown chart that tracks effort remaining. Release Burndown chart that tracks story points that have been completed. This shows how much of the product functionality is left to complete.

No traceability in Scrum

[SP 1.4 Maintain bidirectional traceability among the requirements and work products]

Project Planning

PP	CMMI Practice	Scrum Practice
SP 1.1	Establish a top-level work breakdown structure (WBS) to estimate the scope of the project.	 The standard tasks used in a Scrum process combined with specific project tasks (Scrum Backlog).
SP 1.2	Establish and maintain estimates of the attributes of the work products and tasks.	 Story Points, used to estimate the difficulty (or relative size) of a Story (requirement).
SP 1.3	Define the project life-cycle phases upon which to scope the planning effort.	• The Scrum process.
SP 1.4	Estimate the project effort and cost for the work products and tasks based on estimation rationale.	 Scrum Ideal Time estimate (similar to billable hours or Full-time Equivalents).
SP 2.1	Establish and maintain the projectÕsbudget and schedule.	 Scrum estimates (in Ideal Time). Estimates of what work will be in each release. Sprint Backlog. Project Taskboard.
SP 2.4	Plan for necessary resources to perform the project.	 Scrum estimates in Ideal Time Release Plan, Sprint Backlog and assignments.
SP 2.6	Plan the involvement of identified stakeholders.	 Scrum process roles (including team, Scrum Master, Product Owner). [Note: The stakeholders listed in Scrum might not be the complete list of stakeholders for the project, e.g., customers, other impacted teams.]
SP 3.2	Reconcile the project plan to reflect available and estimated resources.	 Sprint Planning meeting. Daily Scrum meeting.

 $\ensuremath{\textcircled{\text{\scriptsize C}}}$ Copyright 2004-2010 The Process Group. All rights reserved.

PRC GRC Project Monitoring and Control

PMC	CMMI Practice	Scrum Practice
SP 1.1	Monitor the actual values of the project planning parameters against the project plan.	 Sprint Burndown chart that tracks effort remaining. Release Burndown chart that tracks completed story points. This shows how much of the product functionality is left to complete. Project Task Board used to track stories (requirements) that are done, in progress, or ones that need verification.
SP 1.2	Monitor commitments against those identified in the project plan.	 Discussions on team commitments at the: Daily Scrum meeting. Sprint Review meeting. Sprint Burndown chart that tracks effort remaining. Release Burndown chart that tracks Story Points that have been completed. This shows how much of the product functionality is left to complete.
SP 1.6	Periodically review the project's progress, performance, and issues.	 Daily Scrum meeting. Sprint Review meeting. Retrospectives.
SP 2.3	Manage corrective actions to closure.	 Tracking of actions from: Daily Scrum meeting. Sprint Review meeting. [Note: This assumes that teams will track (and not lose) actions.]

No risk assessment / tracking in Scrum

[SP 1.3 Monitor risks against those identified in the project plan]

© Copyright 2004-2010 The Process Group. All rights reserved.

THE

Burndown Charts

Implements PMC sp1.1

Monitor the actual values of the project planning parameters against the project plan.

Measurement and Analysis

SP 1.2	Speci <mark>yfmeasunes</mark> to address the	 Sprint Burndown chart that tracks effort remain q.
	measurement	• Release Burndown chart that tacks story
	objectives.	points that have been completed. This shows
		how much of the poduct functionality is leftto
		complee.
		• [Note: These two measures cold be used to
		track he progress of declared project
		objectives, such a style n time Q and tyle n
		budget.Ó]
SP 1.4	Speciyfhow	• The Scrum process does describe the purpose
	measurement data	and use the Sprint and ReleaseBurn down
	will be ana lyzed and	chats.
	reporte d.	• [Note: CMM expects clearly defined analysis].
SP 2.1	<mark>Obtain</mark> speciifed	 Daily Sorum meeting where Sprint and Relase
	measurement data.	Bundown data are collected.
SP 2.2	Analyze and interpret	 Daily Sorum meeting where Sprint and Relase
	measurement data.	Bundown data are analyzed.
SP 2.4	Report results of	 Daily Sorum meeting where Sprint and Relase
	measurement and	Bundown charts are reivewed.
	anaysisactivites to	• [Note: Not all interested stakeholders will
	all relevant	necessarily be at the Scrum meeting.]
	stakeholders.	

How About the Other Components of Level 2?

• Configuration Management (CM):

- CM is not specifically called out in Scrum. However, in an Agile environment it is pretty easy to add a layer of CM to protect your work.
- Product and Process Quality Assurance (PPQA):
 - Some basic PPQA activities are being done naturally when the Scrum Master checks that the Scrum process is being followed.
 - Scrum does not specifically call out a level of objective process and product check, nor does it state that particular standards or processes should be defined and used.

• Supplier Agreement Management (SAM):

- Not included in Scrum.

Generic Practices?

 Approximately half of the Level 2 GPs of REQM, PP, PMC and MA are implemented by Scrum.

GP 2.2	Establish and maintain the plan for performing the REQM/PP/PMC/MA process.	• The Scr um lifecycle definition and the milestones to perform Scrum.
GP 2.3	Provide adequate resources for performing the REQM/PP/PMC/MA process, developing the work products, and providing the services of the process.	• The resources and schedule time allocated to perform Scrum planning, monitoring and requirements activities.
GP 2.4	Assign responsibility and authority for performing the process, developing the work products, and providing the services of the REQM/PP/PMC/MA process.	• The resource assignments allocated to perform Scrum planning, monitoring and requirements activities.
GP 2.6	Place designated work products of the REQ M/PP/PMC/MA process under appropriate levels of contro I.	• [Note: Scrum does not explicitly require CM to be done. However, this can be performed using a digital camera, backed up drive, or share drive with versioning and controls turned on.]
GP 2.8	Monitor and control the REQM/PP/PMC/MA process against the plan for performing the process and take appropriate corrective action.	 Scrum Master monitoring that the steps of Scr um are followed.

How About Level 3?

- The following Level 3 components are not readily implemented by Scrum without additional work:
 - Organizational Process Focus
 - Organizational Process Definition
 - Organizational Training
 - Integrated Project Management
 - Risk Management
 - Decision Analysis and Resolution
 - Engineering PAs (e.g., RD, TS, PI, VER, VAL)
 - Generic Goal 3 (i.e., using an organization-wide and tailored process with measurements and lessons-learned)

Scrum + -'s

- + 2-4 week cycles creates team momentum, and early feedback on progress and technical solutions.
- + Scrum process can be learned and used in less than 2 days.
- Speed can be mistaken for progress:
 - There is no "Get good requirements" phase, only "Get a list of 1-liners and prioritize." (Although some teams do more than that.)
 - There is no architecture / analysis phase, so you < could implement yourself into a corner.
 - This is fixable by making the focus of each Sprint different.

Applying Scrum to large teams and systems takes extra work.

- e.g., System definition, integration and coordination.

© Copyright 2004-2010 The Process Group. All rights reserved.

Code

30%

70% Analysis,

Code

%0

90% Analysis,

Code

20%

Analysis

80%

60% Analysis, 40% Code 50% Analysis, 50% Code

Summary

- Scrum is a good implementation for many of the practices in Level 2.
- A group can easily use Scrum and CMMI together.
- All the remaining practices in Levels 2 and 3 can be implemented while using Scrum.
- An organization at Level 2 or 3 could adopt Scrum as an additional lifecycle choice.

References

- 1. Implementing Scrum (Agile) and CMMI Together. Process Group Post newsletter, March 2009. http://www.processgroup.com/pgpostmar09.pdf
- 2. Scrum definition: http://www.scrumalliance.org/
- 3. SEI / CMU. CMMI: *Guidelines for Process Integration and Product Improvement*. Boston: Addison-Wesley, 2003.
- 4. Scrum and CMMI Level 5: The Magic Potion for Code Warriors, by Jeff Sutherland, Carsten Ruseng Jakobsen, and Kent Johnson. http://jeffsutherland.com/scrum/SutherlandScrumCMMIHICSS2008.pdf
- 5. Potter, N., Sakry, M., *Making Process Improvement Work A Concise Action Guide for Software Managers and Practitioners*, Addison-Wesley, 2002.

QuickTime[™] and a decompressor are needed to see this picture.