Why CMMI® Maturity Level 5?

Michael Campo
Raytheon Integrated Defense Systems

NDIA CMMI® Technology Conference and User Group
November 17, 2010
Agenda

- Overview
- Why CMMI® Maturity Level 5?
- Quality and Process Performance Objectives
- Raytheon Integrated Defense Systems Return on Investment
- Summary
Overview

Why Maturity Level 5?

Where’s the benefit?
It costs too much! Who’s paying for this?
Maturity Level 3 is all we can afford!
My customer says I only have to be Maturity Level 3!
What is the impact of Maturity Level 5 on business goals?

This presentation will summarize:

• Why CMMI® Maturity Level 5 offers value to a business
• Benefits Raytheon Integrated Defense Systems has realized from deploying Maturity Level 5 processes
High Maturity Controversy

Founding Fathers Debate High Maturity

SW CMM® Gansler Memo CMMI®
The Race is On!

Level 5 Level 5 Level 5 Level 5 Level 5

RFP must be.... ...Level 5
RFP must be.... ...Level 5
RFP must be.... ...Level 5
RFP must be.... ...Level 5
RFP must be.... ...Level 5
“We have five maturity levels. We know three of them work.”

Mark Schaeffer
Office of the Under Secretary of Defense
NDIA CMMI Technology Conference, 2007
Response!

Criteria for Audits of CMMI® High Maturity Appraisals Announced!

Next up: High Maturity Misconceptions - Common Misinterpretations of CMMI® Maturity Levels 4 and 5!

Informative Material is Important to CMMI® Model Interpretation and Implementation

And now…11 Frequently Misinterpreted ML 4-5 Practices!

SCAMPI® High Maturity Lead Appraiser Certification Announced!

If You’re Living the High Life You’re Living the Informative Material!

© CMMI is registered in the US Patent and Trademark Office by Carnegie Mellon University
SM SCAMPI is a service mark of Carnegie Mellon University
Why CMMI® Maturity Level 5?

- CMMI® was created to support business improvement
 - CMMI® is a means to an end, not an end unto itself
 - As a model containing best practices, CMMI® is a business strategy tool to help achieve business objectives

- Business objectives often differ based on an organization’s level of maturity
 - ML 2 and ML3 are about avoiding disasters and gaining control
 - ML 2 organization objectives: avoid disasters due to unrealistic plans, lack of requirements management, poor CM, management without progress measures, etc.
 - Example: begin measuring individual project productivity
 - ML 3 organization objectives: increased consistency of performance, common organizational process tailored by all projects, proactive project management
 - Example: collect productivity on all projects using a tailored common process
 - ML 4 and ML 5 are about managing against quality and process performance objectives to improve performance capability
 - ML 4 and ML 5 organization objective: quantitatively manage ability to perform against quality and process performance objectives that align with business objectives, take action accordingly, and perform causal analysis to improve performance
 - Example: understand variation in productivity, quantify ability to perform against productivity objective, target corrective action to improve productivity at project and organizational levels
Maturity Level 3

PMC SG1: Actual performance and progress of the project are monitored against the project plan.

IPM SP 1.5: Manage the project using the project plan, the other plans that affect the project, and the project’s defined process.

OPF SG1: Identify improvements to the organization’s process and process assets.

Maturity Level 5

OPP SP 1.3 Establish and maintain quantitative objectives for quality and process performance for the organization.

QPM SG1: The project is quantitatively managed using quality and process performance objectives.

OID SG1: Process and technology improvements, which contribute to meeting quality and process performance objectives, are selected.
Quality and Process Performance

Objectives

The engine that drives project performance

Productivity

Defect Density

Defect Containment

CPI

The engine that drives business performance

SPI

Requirements Volatility

The engine that drives high maturity
IDS Quality & Process Performance Objectives

Raytheon Goals

<table>
<thead>
<tr>
<th>Cost</th>
<th>Schedule</th>
<th>Quality</th>
<th>People</th>
</tr>
</thead>
</table>
| CPI ≥ X
Productivity X% > Bid
Defect Containment ≥ X%
Requirements Volatility ≤ X% | SPI ≥ X
Productivity X% > Bid
On-time Deliverables
Average > X% | Defect Containment ≥ X%
Defect Density < X
Requirements Volatility ≤ X% | Average X Hours Training per Employee |

Raytheon Integrated Defense Systems (IDS) Goals

<table>
<thead>
<tr>
<th>Cost</th>
<th>Schedule</th>
<th>Quality</th>
<th>People</th>
</tr>
</thead>
</table>
| CPI ≥ X
Productivity X% > Bid
Defect Containment ≥ X%
Requirements Volatility ≤ X% | SPI ≥ X
Productivity X% > Bid
On-time Deliverables
Average > X% | Defect Containment ≥ X%
Defect Density < X
Requirements Volatility ≤ X% | Average X Hours Training per Employee |
Raytheon IDS
Return on Investment from Implementing CMMI® Maturity Level 5
Assumptions - 1

■ Data used in this study compared IDS 2005 performance 2005 - 2008

■ Actuals and Estimates
 – In most cases, actual data was used in this study. If actuals were not available, conservative estimates were used with rationale
 • Projecting future return from CAR/OID projects is generally estimated

■ Defining “Investment”
 – The cost of all activities to incorporate maturity level 4 & 5 practices into our business processes and be appraised
 • Appraisal costs, development and deployment of updated processes and enablers (e.g., process performance models), and training

■ Calculating “Savings”
 – Apply baseline rates (e.g., 2005 productivity) against 2008 size (e.g., lines of code) to calculate “projected cost at baseline rates”
 • Projected cost at baseline rates = “2005 productivity” * “2008 size” * “2008 labor rate”
 – Compare “projected cost at baseline rates” to 2008 actuals
 • Savings = “projected cost at baseline rates” - 2008 actuals
Sample included 19 CAR/OID process improvement projects
 – 14 CAR, 5 OID

- The large ROI on CAR/OID projects is not surprising
 – CAR/OID projects focus on IDS Engineering goals
 – 7 Defect Containment, 10 Productivity, 1 CPI, 1 Measurement Team Training
- OID ROI is much higher than CAR projects
 - Benefits seen across programs provides more ROI

<table>
<thead>
<tr>
<th></th>
<th>Total ROI</th>
<th>Highest ROI</th>
<th>Lowest ROI</th>
<th>Median ROI</th>
<th>Number of data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROI on CAR/OID projects</td>
<td>38.4 : 1</td>
<td>183.3 : 1</td>
<td>1.9 : 1</td>
<td>14.3 : 1</td>
<td>19</td>
</tr>
<tr>
<td>ROI on OID projects</td>
<td>57.1 : 1</td>
<td>183.3 : 1</td>
<td>10.7 : 1</td>
<td>50.8 : 1</td>
<td>5</td>
</tr>
<tr>
<td>ROI on CAR projects</td>
<td>25.8 : 1</td>
<td>85.5 : 1</td>
<td>1.9 : 1</td>
<td>9.6 : 1</td>
<td>14</td>
</tr>
</tbody>
</table>

Applying CAR project improvements wider across the enterprise would result in more savings
Systems Engineering

- Requirements Volatility
 - 56.1% improvement

- Requirements Development Productivity
 - 14.3% improvement

- CPI
 - 4% improvement
 - CPI variance reduction of 63%
Software Engineering

- DCTI Productivity
 - 65% improvement

- Defect Containment (SW Design through SW Maintenance)
 - 11.6% improvement
Hardware Engineering

- Mechanical Engineering Productivity
 – 25% improvement

- Electrical Design Productivity
 – Analog: 33% improvement
 – Digital: 56% improvement

- Defect Density for Drawing Checking
 – 65% improvement
Return on Investment

Quantified ROI from IDS CMMI® Maturity Level 5 activity: 24 : 1

- Comparison with industry – from “Performance Results of CMMI®-Based Process Improvement”, August 2006, CMU/SEI-2006-TR-004
 - Median ROI 4 : 1
 - Lowest ROI 1.7 : 1
 - Raytheon IDS 24 : 1
 - Highest ROI 27.7 : 1

- IDS results are a direct consequence of meaningful process improvement aligned with the business and engineering objectives
 - Focus on major savings items: productivity, defect containment, CPI/SPI produces real results – the essence of Level 5!
Summary

- What an organization gets out of process deployment and CMMI® appraisals is a reflection of what the organization puts into it
 - Organizations that focus on a maturity level number and “minimal compliance” are unlikely to derive any benefits

- High maturity, with its focus on quality and process performance objectives, puts organizations and projects in a position to succeed
 - OPP applies statistics to management
 - Establish quality and process performance objectives
 - Process performance models that illuminate potential problems in achieving objectives and address real project issues are invaluable to the organization
 - Process performance baselines identify the ability of the organization and its programs to perform in relation to their objectives
 - QPM and CAR push organizational objectives into projects’ daily activities
 - Makes the objectives real to projects, and not just rhetoric
 - Helps projects more fully understand their role in business success
 - Having organizational/project goals in project metrics charts focuses project reaction when objectives are not being
 - OID prioritizes process improvements based on their relationship to objectives
Summary (continued)

All Maturity Levels offer benefits

- Maturity Levels 2 and 3 help prevent disasters and gain control
 - Are not focused on quality and process performance objectives as a driver of process improvement activity
 - Set a low ceiling on benefits of CMMI®-based process improvement

- Maturity Levels 4 and 5 manage ability to perform against quality and process performance objectives that align with business objectives, and take action accordingly

A high maturity organization where all individuals recognize their role and responsibility for business success is an organization that is more likely to achieve success.
Contact Information

For future questions the presenter contact information is:

Michael Campo
Email: Michael_J_Campo@raytheon.com
Phone number: 978.858.5939
Raytheon Integrated Defense Systems
Tewksbury, MA 01876
Presenter Biography

- Michael Campo is a Principal Engineering Fellow at Raytheon Company, with 32 years experience that includes roles as a software developer, software/system integrator, manager, software project manager, and process group leader. As process group leader for Raytheon Integrated Defense Systems, Mike developed and deployed processes that led to achievement of CMMI Maturity Level 3 in 2003, Maturity Level 4 in 2005, and Maturity Level 5 in 2008.

- Mike’s present position is IDS Process Technical Director. He is a certified CMMI Instructor. Mike is a member of the CMMI V1.3 Core Model Team, the CMMI V1.3 Training Team, the CMMI Configuration Control Board, and the NDIA CMMI Working Group.