
Douglas Fiehler
Brett Collins

Jesse Carlaftes
Raytheon Missile Systems

October 29, 2009

Using Model-driven 
Engineering Techniques for 
Integrated Flight Simulation 

Development

Copyright © 2009 Raytheon Company. All rights reserved.
Customer Success Is Our Mission is a registered trademark of Raytheon Company.



Page 211/4/2009

Outline
 Introduction of Model-driven Engineering (MDE)
 History of MDE at Raytheon Missile Systems
 Intentions of Using MDE for Integrated Flight Simulation (IFS) 

Development
 MDE Tool History Example
 Model Lifecycle Comparison
 MDE Process Flow
 Time Savings Comparison
 Performance in Integrated Flight Simulations
 Common Pitfalls
 Conclusions



Page 311/4/2009

Introduction of Model-driven 
Engineering
 Model-driven Engineering

– A.K.A. Model-driven Development (MDD)
– Software development methodology that focuses on creating models 

rather than algorithms
– Domain experts maintain more control of the software end product
– Promotes compatibility and communication between individuals/teams

 One Tool’s Role in MDE
– Simulink® is a Popular tool for domain experts’ development of system 

models
– Real-Time Workshop® Embedded Coder provides MDE interface to 

Integrated Flight Simulations (IFSs) through automatic generation of 
C/C++ code

– IFS engineer owns process of creating code

Real-Time Workshop® provides an MDE interface to the IFS



Page 411/4/2009

History of MDE at Raytheon 
Missile Systems
 Initial work

– Automatic code generation process created to support rapid algorithm 
development 
 Identified limitations and pitfalls
 Standardized deployment for incorporation in object oriented simulations

– Original Processes developed using release Matlab® R11
 Ongoing efforts

– Process has been implemented on many programs
 Hardware models 
 Control algorithms
 Medium and high fidelity

– Presently using Matlab® Release 2009a
 Processes updated for current releases

MDE Processes are in place and are being used at 
Raytheon Missile Systems.



Page 5

Intentions of Using MDE for Integrated 
Flight Simulation Development

 MDE is a powerful process for designing models, both 
hardware and software, for simulations
– Because of requirements imposed on IFSs, impractical to develop 

entire simulation with MDE

 Early development of IFSs requires frequent changes to 
models
– Automatic code generation from MDE methods saves time, not only in 

initial integration of the model into the IFS, but subsequent changes can 
be made simpler and quicker.

 While much initial model design work done with Simulink®, 
other MDE tools are used to develop flight software

11/4/2009

MDE, when used appropriately, is a powerful tool for IFS development



Page 611/4/2009

MDE Tool History Example
 MDE Tools Evolve Over Time, and so must MDE processes

– Matlab® R2008a and Previous
 Would generate only C code
 C++ option only changed the file extensions from “.c” to “.cpp”
 Early versions (R11) could only support discrete models

– Releases Since Matlab® R2008b
 Includes option to generate “Encapsulated C++” code
 True C++ class that can be instantiated in the IFS (multiple times if needed)
 Includes Initialize, Step, and Finalize member functions
 Additional member functions for setting or getting static input variables

Continuous MDE tool improvements require process improvements



Page 7

Traditional Model Lifecycle

Model Lifecycle Comparison

11/4/2009

Autocoding can reduce cycle time for integrating updated models

Increase
Fidelity

Hand-code

Integration
Benefit

Gate

Integrate and Test in IFS

MDE Model Lifecycle

Delivered 
Model

Increase
Fidelity

Auto-code

Integrate and Test in IFS

Using MDE, much less 
effort is needed for coding 
and integration in the IFS, 
thus the simulation can 
closely track the model’s 
development cycle.

Delivered 
Model



Page 811/4/2009

MDE Process Flow

Straightforward process using MDE models to develop 
Functional Simulations

Integrate and Test in Full Simulation

Integrate and Test in Simulation Unit Test Framework

Develop Wrapper Class as Interface between Auto-code and IFS

Automatically Generate Code

Configure for Code Generation

Develop Model

Feedback changes for follow
ing iterations



Page 9

Time Savings Comparison
 Hardware model coded

– Control Actuation System model
– Representative model for most hardware models integrated in IFS

 Used three methods to obtain time comparisons
– Hand-coded from Simulink® block diagram
– Auto-coded using original process using Matlab® R11

 Can only use discrete blocks and integration when auto-coding
– Auto-coded using updated process using Matlab® R2008b

 Continuous blocks and integration supported

 Note that process times are for a first pass through the auto-
coding process
– Subsequent integrations of the same model should show even further 

process time reductions

11/4/2009



Page 10

Time Savings Comparison

11/4/2009

Task
Hand-coding

(hr)

Auto-code without 
Continuous Block 

Support (hr)

Auto-code with 
Continuous Block 

Support (hr)

Create usable source code from using MDE

Insert and connect generic I/O port content 2 2

Replace Integrators with ports 2

Continuous block identification and replacement 8

Auto-code option selection and code generation <1 <1

Preparation of generated code 4 4

Handcoding model - Simulation 60

Handcoding model – Algorithm Design Tools 60

Subtotal 120 17 7

Common efforts to integrate code into IFS

Modifying IFS wrapper object, input files, etc 4 4 4

Performing unit Tests for verification 4 4 4

Performing Simulation Tests for verification 10 10 10

Subtotal 18 18 18

Total Conversion Time 138 35 25

% of Hand-coding 100% 25.4% 18.1%

Significant time savings when auto-coding models



Page 11

Performance in Integrated Flight 
Simulations
 Currently using MDE processes in simulations on multiple 

programs
 Extensive verification of models performed

– Developed detailed processes for conversion of the model to C/C++ 
code

– Verified performance of the models integrated in the IFS match the 
performance of the original model as a unit test

– Regression runs of the full simulation completed to verify performance 
of the model in the IFS

 Processes updated and tested with latest tool capabilities

11/4/2009

Methodical and Thorough Process Used in Development 
of IFSs using MDE Methods



Page 12

Performance in Integrated Flight 
Simulations
 Wing Actuation 

System Hardware 
Model

11/4/2009

Good Agreement in Time Domain Performance



Page 13

Performance in Integrated Flight 
Simulations
 Control Actuation 

System Hardware 
Model
– Step response
– Bode Plot

11/4/2009

Good Agreement in both Time and Frequency Domains



Page 14

Common Pitfalls
 Model Configuration

– Every model is different, new configurations produce new problems
– Common model design standards needed for developers to streamline integration into the 

simulation
 Tool Capabilities

– As with any tool, user must understand process, model, and MDE tool, not a “push-button” 
process

– Common areas to watch
 Timing – no time shift present
 Does auto-code accurately represent the system? Auto-code should identically 

reproduce outputs given identical inputs 
 Integration Schemes

– Internal
 Continuous – Only available in later releases of Matlab®

 Discrete – Not always the choice of model developers for representing system
– External

 Tie into simulation numerical integration schemes
 Reduces ability to verify against original model

11/4/2009

While MDE tools are useful, care must be taken in model development



Page 1511/4/2009

Conclusions
 Raytheon Missile Systems has successfully used MDE 

processes to incorporate models into IFSs
 Full set of procedures developed to aid personnel cross-

program and to train new users
 Procedures verified with multiple models on multiple 

simulations
 Procedures are updated as new features become available in 

MDE tools
 Generating code automatically using MDE processes can 

save significant amounts of time preparing models for 
incorporation in simulations, and can be completed with 
confidence


	Using Model-driven Engineering Techniques for Integrated Flight Simulation Development
	Outline
	Introduction of Model-driven Engineering
	History of MDE at Raytheon Missile Systems
	Intentions of Using MDE for Integrated Flight Simulation Development
	MDE Tool History Example
	Model Lifecycle Comparison
	MDE Process Flow
	Time Savings Comparison
	Time Savings Comparison
	Performance in Integrated Flight Simulations
	Performance in Integrated Flight Simulations
	Performance in Integrated Flight Simulations
	Common Pitfalls
	Conclusions

