SysML Strategies to Characterize and Analyze Systems of Systems

Jo Ann Lane (jolane@usc.edu)
Tim Bohn (tbohn@us.ibm.com)
Overview

- System of systems (SoS) engineering core elements
- SysML models that support SoS engineering
- Example SoS SySML models
- Conclusions
What is a “System of Systems”?

- Very large systems using a framework or architecture to integrate constituent systems
- Exhibits emergent behavior not otherwise achievable by constituent systems
- SoS constituent systems (CS)
 - Independently developed and managed
 - New or existing systems in various stages
 - May include multiple COTS products
 - Have their own purpose
 - Can dynamically come and go from SoS

- Typical domains
 - Business: Enterprise-wide and cross-enterprise integrations
 - Military/Crisis Response: Dynamic communications infrastructure

Based on Mark Maier’s SoS definition [Maier, 1998]

Lane and Bohn NDIA 2009
SoS Engineering Core Elements

- Translating capability objectives
- Understanding systems & relationships
- Orchestrating upgrades to SoS
- Addressing requirements & solution options
- Monitoring & assessing changes
- Developing & evolving SoS architecture
- Assessing performance to capability objectives

External Environment

New SoS SE role
Persistent SoS overlay framework
SoS upgrade process
External influences
SoSE Core Element Description

- **Translating Capability Objectives**
 - Starts with an SoS need or new capability
 - Works to understand new capability and alternatives for providing it

- **Understanding Systems and Their Relationships**
 - Collects and maintains information about current state of the SoS and its CSs

- **Assessing Performance to Capability Objectives**
 - Evaluation of current performance and how performance meets current and future needs

- **Developing/Evolving SoS Architecture**
 - Evaluation of existing SoS architecture and identification of alternatives to mitigate limitations and improve performance

- **Monitoring and Assessing Changes**
 - Monitoring of CS non-SoS changes

- **Addressing Requirements and Solution Options**
 - Evaluation/prioritization of SoS requirements
 - Evaluation of solution options and selection of option

- **Orchestrating Upgrades**
 - Oversight activity to monitor progress of the CS SoS capability upgrades and mitigate obstacles
Desired SoS Engineering Modeling Support

- Understand CSs and their relationships
 - SoS architecture and capabilities
 - CS functional capabilities
 - Interfaces and protocols
 - Data elements, precision, and rates

- Develop and evolve an SoS architecture
 - Understand current architecture
 - Develop target architecture to guide SoS evolution
Desired SoS Engineering Modeling Support (continued)

- Assess CS changes
 - Impact to SoS architecture and capabilities
- Address new requirements and options
 - Implementation and transition strategies for desired capability
 - Impact to constituent systems
SysML Models that Support SoS Engineering Needs

- **Object classes**
 - Characterize each SoS CS and its capabilities

- **Interface classes**
 - Describe each CS interface

- **Input/output entity classes**
 - Express the associated data attributes of each data item transferred over that interface

- **Use cases**
 - Characterize both CS and SoS capabilities from the different user perspectives

- **Sequence diagrams**
 - Characterize and analyze the operational flow for an SoS capability
Example SoS: Regional Area Crisis Response SoS (RACRS)

Command Control Center (CCC) Context Diagram
Scenarios: CCC Use Cases
Evacuate Area Sequence Diagram
Evacuate Area Alternate Sequence for Intruder “Management”
CCC Interface Class

Command Control Center

- Evacuate Area (where: Area)
- Acknowledged (AckType: Acknowledgment)
- Report All Clear (who: Reporting Entity)
- Report Intruder (where: Area)
- Eliminate Intruder (where: Area)
- Report Intruder Eliminated (where: Area)
Evacuate Area I/O Entities
Evacuate Area I/O Entities by Actor

- **Fire Control**
 - Status Area Evacuated (where: Area)

- **Police Control**
 - Evacuate Area (where: Area)
 - Report Intruder (where: Area)
 - Report Intruder Eliminated (where: Area)

- **Reverse 911**
 - Send Calls (callType: Call Type)

- **UAV**
 - Patrol Evacuated Area (where: Area)
 - Eliminate Intruder (where: Area)
 - Target and Eliminate ()

- **Reporting Entity**
 - Police
 - Fire
 - UAV
 - UGV

- **Acknowledgment**
 - Evacuate

- **Area**
 - «send_receive»
Summary and Conclusions

- Recent SoSE research identified need for useful SoSE models
- Goal of presentation to show how SysML models can be used to support some of these needs
 - Context diagrams
 - Use cases
 - Object blocks
 - Interface classes
 - I/O classes
Summary and Conclusions (continued)

- Captures information distilled from multiple sources and integrates to provide a “bigger” picture and support
 - End-to-end performance of SoS mission scenarios
 - Evaluate new capability alternatives
 - Evaluate proposed architecture changes
 - Evaluate impacts of proposed CS changes not related to SoS capability changes

- Key to success in modeling SoSs
 - Model only the aspects that are important for the engineering activity
 - Consider using models in new ways, for example I/O classes to capture interface data attribute information
References

