This project describes a NPS capstone project as part of obtaining an MS in Systems Engineering.

The project examined transporting cargo from a sea base to the desired destination and make recommendations regarding the best approaches for meeting those objectives. Key research goals were:

- Determine required capabilities and functions for an ASE
- Develop appropriate operational concept (OPCON)
- Examine various ASE concepts, to include the Transformable Craft (T-Craft)
 - Conceptual platform under the design of the Office of Naval Research (ONR)
 - ONR sponsoring multi-year effort through NPS to assist in T-Craft system design and architecturing.
T-Craft Concept

OBJECTIVE

- **Fuel Efficient Self Deployment**
 - Unrefueled range = 2500 nm
 - 20 knots, through SS 5
 - No cargo

- **High Speed Transit**
 - Unrefueled range = 500 nm
 - 40 knots, through SS 4
 - Full load condition

- **Fully Amphibious**
 - Traverse sand bars / mud flats
 - “Feet Dry” on the beach

T-Craft Payload Capacity: Equivalent to Carrying From 4 up to 10 M1A1 Tanks

- Good Seakeeping Mode at the Sea Base
 - Mitigate wave induced motions in SS 4/5 to enable rapid vehicle transfer

Sea Base

- 2000 – 2500nm
- 25 – 250nm

ISB

OBJECTIVE
ASE Project Stakeholders

Major Stakeholders:
- Operational Commands
 - Navy
 - USMC
 - Army
 - SOCOM
 - JFCOM
 - TRANSCOM

Secondary Stakeholders:
- NAVSEA
- Marine Corps Combat Development Command (MCCDC)
- NAVSUP
- Marine Corps Logistics Command
- ONR
- TACOM
- Combined Arms Support Command (CASCOM)
- Military Sea Lift Command
- PDM Army Watercraft Systems (AWS)
- NATO
- Coast Guard
Systems Engineering Development Process

Formulation → Analysis → Interpretation

Primary Data Flow
Secondary Data Flow
“A capability is needed to fully enable the potential of the sea base. For a sea base to be truly beneficial a capability must exist that supports efficiently transporting needed materiel from the sea base to the desired debarkation point. The capability must support peace-time, non-combat operations’ and war-time, combat operations’ logistics and support needs. The solution must be cost effective and capable of operating under all environmental conditions, including sea states, under which necessary military operations are expected to take place and must support a transport rate sufficient to ensure materiel is delivered within operational time requirements.”
Seabasing
Analysis of the Full Range of Military Requirements

Task organized forces to meet Combatant Commander requirements

Rigorous performance requirements
Major warfighter concern
Missions

High Threat Environment

Major Combat Operation
- Heavy Equipment
- Time is essential
- Forcible Entry Possible

Natural Disaster Relief
- Cargo: food, medicine, personnel

Low Threat Environment

Police Enforcement Operation
- Light Combat Equipment
- May be time sensitive
- AT/FP type threat, not major combat

Humanitarian Aid
- Cargo: food, medicine, personnel
REVISED PROBLEM STATEMENT

For a sea base to be truly beneficial a capability must exist that supports efficiently transporting needed materiel from the sea base to the desired debarkation point. The capability must support peace-time, non-combat operations’ and war-time, combat operations’ logistics and support needs. The solution must be cost effective and capable of operating under all environmental conditions, including sea states, under which necessary military operations are expected to take place and must support a transport rate sufficient to ensure materiel is delivered within operational time requirements.

0. Operate Advanced Seabasing Enablers (ASE) System

1.0 Deploy ASE
- (This function moves the ASE from its initial location to the Sea Base)
 - **1.1 Deploy ASE for Combat Operations**
 - **1.2 Deploy ASE for Non-Combat Operations**

2.0 Process Cargo
- (This function handles the loading and unloading of materiel from the ASE)
 - **2.1 Load Combat Cargo**
 - **2.2 Un-load Combat Cargo**
 - **2.3 Load Non-Combat Cargo**
 - **2.4 Un-load Non-Combat Cargo**

3.0 Transport Cargo
- (This function moves materiel from the Sea Base to its destination)
 - **3.1 Transport Combat Cargo**
 - **3.2 Transport Non-Combat Cargo**
ASE Objectives Hierarchy
Non-Functional Requirements

Maximize Availability
Maximize Maintainability
Maximize Transportability Options
Maximize Standardization & Interoperability
Maximize Producibility

Maximize Reliability
Minimize Manning
Maximize Environmental Performance
Maximize Survivalbility
Maximize Safety

MAXIMIZE SURVIVABILITY
Built in Wash-Down Capability
N (threshold)
Y (objective)
Signature Reduction
Not Required (threshold)
Reduced (objective)
Alternatives

- Researched several possible alternative solutions
 - LCAC (Landing Craft Air Cushion)
 - SSC (Ship to Shore Connector)
 - LSV (Logistics Support Vessel)
 - LCU (Landing Craft, Utility)
 - T-Craft (Transformable Craft)
 - JHSV (Joint High Speed Vessel)
 - Heavy Airlift

- All options already conceived. Information gathered from existing projects / programs.
Both static and dynamic systems analysis:

- Using cargo capacity, speed, range of various alternatives, team members conducted comparison for both MCO and Humanitarian

Simulation analysis examined:

- Extent of capability to complete the Load Cargo function, using Mean time required to assemble cargo/forces and load assembled cargo/forces.
- Extent of capability to complete the Transport Cargo function, using mean time required to transport cargo/forces ashore.
Overall Results

- T-Craft has highest overall performance score by a large margin for combat mission
- JHSV has highest score for humanitarian mission followed by LSV and T-Craft
Cost vs Performance – Major Combat Operations

- T-Craft offers the highest utility with a moderate cost
- LSV and LCU provide moderate utility at comparatively low cost
- SSC and LCAC costs are the highest with the lower utility value due to their relatively small cargo capacity
Cost vs Performance – Humanitarian Mission

- JHSV offers the highest utility with a moderate comparative cost.
- LCU and LSV again have the lowest cost with LSV having the lowest overall cost with a fairly high utility.
- SSC and LCACs are obviously poor choices with high cost and low utility.

Humanitarian Mission - Seabase @ 25NM - # of vessels to move 100k tons in 48 hrs @ max craft speed

Humanitarian Mission
100k tons in 48 hours @ max craft speed
Total Craft Acquisition Cost vs. Utility Value

Acquisition Cost of total # connectors required for Humanitarian (FY2009 $M)
FY 2010 (and Beyond) Proposed Research

- Conduct thorough systems analysis of T-Craft and Sea Base Enablers
- Examine more specific proposed T-Craft capabilities and their operational impact
- Examine other operational concepts and scenarios appropriate for T-Craft system.
- Develop a virtual representation of T-Craft for use in analysis and possibly training
Focus for FY 2010

In depth, formal evaluation of T-Craft performance, based on the systems engineering framework and operational concept developed as part of FY09 effort.

- This includes the evaluation of alternatives and decision analysis using simulation and experimental design.
- Researchers from Simulation and Efficient Experimental Design (SEED) Center at NPS support this effort.
- Actively recruiting an NPS Operations Research student to address this topic for their thesis.
Focus for FY 2010

- Examine and determine the requirements for the broad simulation analysis efforts addressing T-Craft performance in a variety of operational concepts.
- Examine and determine the appropriateness of several simulation tools to meet these requirements regarding the evaluation of T-Craft performance in a variety of operational concepts.
Create a prototypical virtual environment (VE) that can be used by designers of the T-CRAFT to inspect prospective designs.

- For example, inside the virtual environment, the designers will be able to simulate various operations in the craft to ensure that the design can support these operations.
- Additionally, the VE will be integrated into a Java-based discrete-event simulation package known as SimKit. This integration will provide a means to conduct very powerful simulation analysis in a virtual environment. At least one thorough test case of this integrated simulation will be developed and demonstrated.
Focus for FY 2010 (and beyond)

- Conduct a thorough life cycle cost analysis of the T-Craft. I have an OR student who is very interested in this as his thesis topic.

- Propose and develop a “fleet” architecture, examining different combinations of cargo platforms, to include T-Craft, that can best address transportation gaps identified by Army and USMC in specific detailed scenarios. This effort will build on our previous systems architectural development, which considered individual cargo platforms in competition with each other (LCAC, JHSV, T-Craft, etc). This portion of the project is being conducted as a graduate thesis by an NPS student in the Master of Science in Systems Engineering curriculum.
Questions?

Gene Paulo
Associate Professor, Department of Systems Engineering
Office: (831) 656-3452
Email: eppaulo@nps.edu